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( Abstract

This research focused on interpreting a discrete event simulation

model's condition specification primitives and their associated

actions. A network representation was created using these condition

action pairs (CAPs) as network nodes. The arcs, or edges, of the

network represent information being transferred such as specific

attributes of the CAPs. This network representation was decomposed into

smaller networks, or sub-networks, by taking advantage of the structure

of the network. The structure of the network was translated via a

software interface into an edge-incidence matrix (E-matrix). The E-

matrix was then transformed into a pseudo-covariance matrix (C-matrix).

The C-matrix was used in the creation of a SAS data set which served as

the input necessary to do principal components analysis. Two examples

were used to demonstrate this procedure.-7 KZ -,
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DISCRETE EVENT SIMULATION MODEL DECOMPOSITION

1. Introduction

Background

s3imulation models are currently being used for a multitude of

purposes. Some simulation models are concise and well organized thereby

facilitating their usage. However, some of these models may be quite

lengthy and complex which causes development costs to rise beyond an

acceptable level. The creation of an effective development environment

has helped to eliminate this problem. Tools which are used to support

modeling and analysis have been incorporated into this environment.

Such an environment uses a model specification language which has

condition specifications as its basic constructs Condition

specifications and their associaions are called condition action

pairs (CAPs)

One distinct advantage of using these condition specifications is

that it allows the developer of a discrete event simulation to establish

an intermediate form of the simulation while the simulation is being

developed. This intermediate form is a bridge between the conceptual

stage and the executable stage. When progressing from the concept of

the simulation to its intermediate form, objectives of the simulation

are identified. Each objective necessitates the completion of one or

more processes. The particular steps of these processes need to then be

established. At this time, the condition specifications of these steps
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are constructed, and the complete simulation is formulated as a single

model. This intermediate form is useful in determining if there are

errors in the design of the simulation. Finding errors early in the

development of a simulation is both cost effective and time efficient

0 for the developer.

Another use of this intermediate form is in establishing the

structure of the model. The condition specifications can be transformed

into a network representation. A network representation can then be

developed directly from the definitions of the systems and objectives of

the simulation. This network representation allows for the building of

a run-time-efficient implementation as well as the design of statistical

analysis procedures. A network representation can be obtained by

expressing the CAPs as network nodes. This network representation will

* then be decomposed into smaller networks, or sub-networks, to take

advantage of the structure of the network. The arcs, or edges, of the

sub-networks represent information that is being transferred, such as

specific attributes of the CAPs. The structure of each sub-network is

translated into an edge-incidence matrix (E-matrix), and this E-matrix

is converted into a pseudo-covariance matrix (C-matrix). The C-matrix

can then be used in the creation of an IMSL or SAS data set. Computer

aids are not generally available for this type of procedure. However,

once this procedure is completed the data set will then be used as the

input necessary to analyze the network and its structure.

Currently, a network representation of a simulation can only be

accomplished by a non-automated effort. For even relatively small

networks, this manual effort is extremely labor intensive. Upon
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completion of the development of the network representation, the network

can be decomposed. The decomposition of the network is also a laborious

task. Because of the degree of manual effort involved in this entire

process, errors are likely to occur. These errors obviously make the

results inaccurate and can, in fact, render the entire effort useless.

If the errors are not discovered, as is often the case, potentially

misleading work on the simulation continues.

Once the simulation has been properly decomposed, analysis can be

performed to identify the sub-networks. This analysis usually requires

mathematical and/or statistical software. To use these software

packages, information obtained from the structure of the sub-networks

must be manually transferred to a file and formatted to be compatible

with the software package that provides the computations.

Problem Specification

Representing a discrete event simulation model's condition

specifications and their associated actions as a network is an error-

prone, labor-intensive process. Analysis of the network representation

necessitates examining the structure of the network and its sub-

networks. This analysis is often inaccurate due to the size,

complexity, and/or sophistication of the network.

Scope of the Problem

This research focuses on interpreting a discrete event simulation

model's condition specifications and their associated actions. This

procedure was translated into a computer program to facilitate its use.

One statistical procedure, principal components analysis, was used for

* the analysis phase.
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A simple existing simulation model was used for gathering

preliminary information. A computer program was then developed to

automate the procedure of interpreting the CAPs. A more complex model

was then used as a test case upon completion of the computer program.

This was done to verify the program's ability to create a network

representation of a simulation model and determine its structure.

Research Ob.jectives

The primary objective of this research was to represent a discrete

event simulation model as a network and then decompose that network into

sub-networks. The structure of the network representation was

translated into an edge-incidence matrix. This entire process was

accomplished by means of a computer program. This program will greatly

aid the analysis of the discrete event simulation model.

A secondary objective of this research was to develop some basic

error checking techniques to ensure the accuracy of the condition

specification and its network representation. Diagnostics generated by

the computer program provide information necessary to correct any

deficiencies that are discovered, such as storing information that is

not used anywhere in the model.

Overview

This research reviewed literature concerning the concepts of model

decomposition and computer specification language. A model

decomposition methodology was then developed and translated into a

computeL program. Two examples were then decomposed and analyzed to

demonstrate the effectiveness of the methodology and the computer

4



program. Potential areas of related research were also identified in

this research.
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II. Literature Review and Background

Introduction

The concept of model decomposition is but one major area that

provided insight into potential methods for pursuing this research.

Other areas of interest include computer specification language and

computer assisted modeling. Network theory was also applied throughout

the solution process. Information on network structures and methods of

their decomposition prove to be beneficial in this research.

Related Literature and Background

Formal logic has been used in the field of mathematics for problem

solving to enhance the creation of prototype models. Defined

relationships between entities allows for the use of a specification

language in model definition. The specification language facilitates

the rapid development of prototypes by combining object programming and

logic programming (de Freitas and others, 1986:844-849).

Two early attempts to automate the formulation of a discrete event

simulation model led to the development of an expert system. The first

attempt led to a prototype system that used formal logic but was not

flexible. This inflexibility led to the second prototype system which

used a more informal approach (Doukidis and Paul, 1985:79-90). The

experience obtained from these efforts helped to alleviate potential

problems. While some constraints are to be expected when using a

computer program, such as an expert system, minimizing the degree of

awkwardness and the inconvenience to the user is a major consideration.

To create the computer program to interpret condition specifications,
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some syntax requirements will be necessary. However, these will be as

flexible as possible.

The idea of using a model development environment (MDE) was

introduced to try to alleviate some of the modeling costs. This was

done by bridging the gap between the model as it was conceived and the

actual executable representation of the model. As a result, condition

specifications are well defined in this approach (Overstreet and Nance,

1985:190-201). This set of condition specifications was one of the

cornerstones for this research. Pre-defined conventions were observed

to the greatest extent possible.

A model development environment is used for rapid prototyping in

the requirements specification phase. The operating system and hardware

are major parts of this environment and can be thought of as a first

layer of the MDE. A kernel MUE is a second layer to be followed by a

minimal MDE and then the MDE itself (Balci, 1986:53-67).

The Conical Methodology can be used in evaluating software

development methods. This methodology entails analyzing the objectives,

principles, and attributes of a discrete event simulation model. The

manner in which these elements are linked together is evaluated as a key

component of these software development methods. The method is compared

with the software tools available that comprise the environment (Nance,

1987:38-43). Despite the fact that this was initially developed for

larue-scale simulation model development, the concepts are applicable in

part to smaller models.

A method developed to represent modular discrete event models in

distributed simulator architectures was extended to facilitate modular,

7



hierarchical model specification. These specifications are transformed

into a logical form called abstract simulator architecture (Zeiglar,

1985:3-7). This architecture can be evaluated to shed light on the

decomposition of the network representation of the CAPs into modules or

sub-networks.

Once the CAPs have been decomposed into their primitives and

properly interpreted, the network representation is complete. A

framework was then designed to facilitate statistical analysis.

Principal components analysis, a special case of factor analysis, allows

for finding the linear combination of factors that explains the greatest

part of the variance in the data. This was the method of statistical

analysis used. Usually the magnitude of the eigenvalues obtained from a

correlation matrix determine how many factors are to be considered

significant.

Kaiser developed a criterion which is the most frequently used

method for determining the number of factors to retain. This criterion

states that components whose eigenvalues are greater than unity should

be retained. However, this research uses a covariance matrix instead of

a correlation matrix because all of the units in the system are

identical, allowing more information to be obtained from the results.

The numerical value of the information is not converted into a range

from -1 to +1. Instead, the values of the covariance matrix are used.

These values represent actual information in the network

representation. Also, the values in the covariance matrix have

dimensions associated with them. This enhances the interpretability of

the results. Because the covariance matrix was analyzed, Kaiser's

8



criterion was not used. Instead, the number of factors to be retained

was based on a specified percentage of the variance of the data

explained. Component loadings were used to determine which factors were

significant and what attributes comprise these factors (Dillon and

Goldstein, 1984:23-107).

This method is demonstrated using a simple directed graph as in

Figure 1. Arcs represent information that is being transmitted from one

node to another. These arcs are used in the formulation of an

2 3

Figure 1 - Simple Directed Graph

edge-incidence matrix (E-matrix). The E-matrix can be converted into a

pseudo-covariance matrix (C-matrix) where C = E - ET. Different C-

matrices may be obtained by applying various weighting schemes to the

problem. This might be done to account for the number of arcs going

from one node to another or to account for the amount of information

* being passed along the arcs. Weighting schemes are translated into a

weight matrix (W-matrix). When this is done, C = E W ET. If no

specified weighting scheme is used, the W-matrix defaults to the

* identity matrix. Once a C-matrix is obtained, factor analysis can then

be used to determine the principal components of the system. In this

9



example, a pseudo-correlation matrix was used. Therefore, the number of

factors to be retained was determined by using Kaiser's criterion.

Three factors are retained. Using the varimax rotation during factor

analysis yields the factor loadings shown in Table 1. Three nodes load

on each of the factors, as circled in the table. Notice that the nodes

that load on each factor interact heavily with each other. These

factors defines the structure of the network. These interactions

illustrate how this directed graph can be decomposed into three distinct

sub-graphs. This information provides a low complexity solution to the

model decomposition problem (Bauer and others, 1985:185-188).

Table 1. Rotated Factor Loadings

Node Factor 1 Factor 2 Factor 3

1 .08294 .08294 .75994
2 -.02441 -.02441 .80475
3 -.02441 -.02441 .80475
4 .75994 .08294 .08294
5 .80475 -.02441 -.02441
6 .80475 -.02441 -.02441
7 .08294 .75994 .08294
8 -.02441 .80475 -.02441
9 -.02441 .80475 -.02441

* The CAPs are composed of condition specifications and their

associated actions. The condition specification is an attempt to relate

a general description to a formal set of guidelines. These condition

* specifications are either Boolean expressions or time-based signals.

The condition specification primitives are the basic constructs which

make up the formal set of guidelines. The primitives can be treated as

* statements in a computer language. Each primitive has a specific

10



function with which it is associated. An example of a CAP is the

following statement:

When Alarm(end-repair)

In this case, "When Alarm" is the name of the primitive, and the

function "end-repair" is a time-sequencing condition. Initialization

and termination primitives must be present when formulating a series of

CAPs to be interpreted. Each primitive must be written in a specific

manner using precise punctuation. This syntax facilitates the

interpretation of the primitive (Nance and Overstreet, 1986:1-14).

Nance and Overstreet illustrate this concept with an example. This

example was used as a test case for the computer program that was

developed in this research.

One means of measuring the complexity of a simulation model is by

using the control and transformation metric. This metric uses a network

representation and is based on the number of arcs and variables that

communicate between nodes. Model complexity (MC) is defined as:
n

MC (i 1{2 * RWi + 1.5 * W. + R.) * Ai / N

where

RW. = number of variables in node i read and written
1

W. = number of variables in node i writen only1

R. = number of variables in node i read only
1

A. = number of arcs entering or leaving node i1

N = total number of nodes

This metric may be of interest in the network decomposition process

(Wallace, 1987:597-602).
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An example of using condition specifications as the bridge between

the conceptual model and the executable model is derived from the

illustration of Computerized Manufacturing Systems (Lenz and Talavage,

undated:3-8). This illustration provides for a moderately in-depth

application of condition specifications. Doubly-subscripted variables

are the norm, and triply-subscripted variables are not uncommon in this

derived set of condition specifications. This led to an opportunity to

use different weighting schemes based on the amount of information,

contained within the subscripts, communicated between nodes when

obtaining the C-matrix (Talavage, 1986:1-3). This example of condition

specifications was used as a second test case due to its level of

complexity.

Properly diagnosing condition specifications is important. Because

this diagnosis is not automated, errors may be overlooked. Thus, it is

important to automate diagnostic functions to ensure that the condition

specifications are properly interpreted. Three primary categories in

which automated diagnostic support is needed are analytical functions,

comparative functions, and informative functions. Analytical functions

aid in determining the existence of a property of a model

representation. Comparative functions measure the differences among

multiple model representations. Informative functions yield

characteristics that can be extracted or derived from model

representations (Nance and Overstreet, 1987:590-595). The research

herein provides automated support in the diagnostic areas of analytical

and informative functions. The analytical functions addressed are

attribute utilization, attribute consistency, and connectivity. The

12



informative functions addressed are attribute classification and

decomposition.

Using a computer specification language facilitates model

decomposition. Methods of model decomposition currently exist that were

used in this research. The decomposed network can then be analyzed

using available statistical techniques. A methodology that combined

these aspects was developed and formed into a computer program.

13



III. Methodology

Introduction

A methodology was developed to decompose a discrete event

simulation model. The first step was to interpret the model's CAPs.

After this interpretation, a network representation was developed. This

network was then analyzed using principal components analysis. This

process was then automated by developing a computer program to perform

the steps of this methodology.

Decomposition Procedure

A condition specification for a model consists of interface

specifications, object specifications, report specifications, and

transition specifications. The interface specifications identify the

input and output attributes. Attributes record information about the

objects of the simulation that are needed for the model. They also have

values assigned to them to account for changes in the state of the

associated objects. Object specifications consist of the object name, a

list of attributes associated with the particular object, and a-range

for each of the attributes. Report specifications are produced to

provide information about the behavior of the model. Because the

complexity of the data collection and computation process varies, the

form of this specification is not prescribed. Transition specifications

are made up of ordered pairs called condition action pairs (CAPs). The

transition specification may also include a set of functions which are

used to simplify expressions in both the conditions and actions. The

construct of ordered pairs is a property which facilitates the

decomposition of a discrete event simulation into a network

14



representation. Each CAP has a condition and an associated action. If

the condition of the CAP is true, then the associated action occurs.

The action continues to occur until the condition is no longer true.

Several CAPs may have conditions which are true at the same time. CAPs

that have identical conditions are grouped into an action cluster

(Overstreet and Nance, 1985:190-201).

Interpreting CAPs is the foundation for decomposing a discrete

event simulation into a network representation. This process begins by

determining the type of attribute used in a transition specification

statement.

The three types of attributes that exist in the transition

specification are control, input, and output attributes. An attribute

is a contzol attribute of an action cluster if it appears in the

condition expression of the action cluster. The first statement in an

action cluster is a CAP. The condition of the CAP is either a "WHEN" or

"WHEN ALARM" statement. By identifying the statement as the beginning

of a new action cluster, the attribute in the statement is determined to

be a control attribute. The input attribute is an attribute that

affects one or more output attributes of the associated action cluster.

Output attributes of an action cluster are those attributes which can be

changed by the actions within the action cluster.

Consider the following simple action cluster:

WHEN ALARM(need re-stock);
quantity :== quantity + resupply;
END WHEN;

The attribute "needre-stock" is a control attribute. When this

condition exists, this action cluster will become active. The first

15



"quantity" in the second statement is an output attribute. Its value is

incremented (changed) by the action that occurs within this action

cluster. The second statement has two input attributes -- "quantity"

and "resupply." Both of these input attributes affect the value of the

attribute "quantity" on the left side of the assignment statement (the

second statement in this action cluster).

In addition to an assignment statement, several other types of

statements may exist in a transition specification. The statements

which can be identified by the computer program developed in this

research are summarized in Table 2.

Table 2. Types of Statements

Statement Syntax

Assignment output :== input expression
Set Alarm SET ALARM(alarm name[[argument list]], time delay)
Create CREATE(object type[, object idi)
Destroy DESTROY(object type[, object id])
When Alarm WHEN ALARM(alarm name expression[, parameter list])
New Node (name of a new action cluster to follow]
Comment any statement that does not follow the above

conventions

Each action cluster can be thought of as a node in a network

representation. Each attribute within an action cluster is identified

as being part of the composition of a node. After each action cluster

has had all of its attributes identified, communication between action

clusters is determined. Communication occurs when the value of an

output attribute of a node is used in another node's control or input

attributes. These communications are represented as arcs in a network

16



representation. The value of the attribute that is being communicated

represents the information that is flowing along the arcs of the

network.

The network representation can be represented in an edge-incidence

matrix (E-matrix). The dimension of the E-matrix is the number of nodes

by the number of arcs or edges. Each column of this matrix consists of

two ones and the rest zeroes. The ones are placed in the rows

corresponding to the nodes which the arc connects. If two or more

columns are identical, then all but one of them are discarded. This

yields an E-matrix in which all of the columns are unique. An example

of an E-matrix in which nodes one and two, one and three, and two and

three communicate is:

1 1 0
1 0 10 1 1

where each column represents an edge, and the rows represent the

different nodes.

Once the E-matrix has been constructed, the network representation

T(NR) can be derived by the equation NR = E E. It is often desirable

to apply a weighting scheme to the network representation equation to

account for various features of the network such as the number of arcs

between two nodes or the amount of information being passed between two

nodes. The dimension of the weighting matrix (W-matrix) is the number

of edges by the number of edges. The W-matrix is a diagonal matrix.

Thus, the generalized network representation equation becomes NR = E . W

ET. If no weighting scheme is desired, an identity matrix can be

17



assumed as the W-matrix. This allows the generalized network

representation to be used.

The resulting NR-matrix is symmetric and positive semi-definite.

Because of this, it can be treated as if it is a pseudo-covariance

matrix (C-matrix). Eigenvalues and their associated eigenvectors can be

extracted from this C-matrix. Using the eigenvalues, an examination is

made to determine if it is feasible to reduce the dimensionality of the

C-matrix. This examination is performed by using principal components

analysis. The Statistical Analysis System (SAS) software was used to do

the principal components analysis. The results of the principal factors

analysis were interpreted in an attempt to shed light on the inherent

structure of the network representation.

Automating the Procedure

This decomposition process was automated by developing a computer

program. This program was written in the language BASIC. The major

reasons for choosing this language were the language's ability to

manipulate strings of data, the researcher's familiarity with the

language, and portability. This program was developed on an IBM/AT-

compatible personal computer running under MS-Dos 3.20.

This program was developed in three stages that directly parallel

the decomposition process. These stages were 1) identify action

clusters and their associated attributes, 2) create a network

representation from the information obtained in the first stage, and 3)

create the appropriate C-matrix to analyze using principal components

analysis.
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The transition specification, which is in a standard ASCII text

file, is read by the program to identify the action clusters and their

associated attributes. Each line of the transition specification is

categorized into one of the statement types given in Table 2. The type

of statement is identified by examining the characters in the

statement. The entire statement is read into one variable. After this

is done, a search is made for strings of characters that uniquely

identify the statement type. This is accomplished by searching for key

words that appear in each statement type. For example, the string "WHEN

ALARM" only appears in a "WHEN ALARM" statement. In this manner the

statement types are identified. For an assignment statement, the string

":==" is the object of the search. The beginning of a node is

determined by finding a "{" character. Once the "{" has been found, the

expression inside the braces is assumed to be the name of that

particular node. If the line of the transition specification being

examined is not one of the statements found in Table 2, then the

statement is considered to be a comment statement.

If the statement is identified to be from Table 2, the attributes

of the statement are then identified. This is also done by examining

the characters in the statement. If the statement is a "WHEN" or "WHEN

ALARM" statement, the control attribute(s) is identified according to

the syntax of the statement. Input attributes may be present in these

two statements if the condition is given as an expression. If the

statement is an assignment statement, the output attribute is to the

left of the assignment indicator (":=="). Input attributes are to the

right of the assignment indicator. It is quite possible to have more

19
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than one input attribute in the same statement, particularly when the

input side of the statement is given as a mathematical expression. The

"CREATE" statement has only one attribute and that is an output

attribute. Likewise, the "DESTROY" statement has one attribute;

however, this is an input attribute. The "SET ALARM" statement contains

both output and input attributes. The alarm name is an output

attribute, and the time delay is an input attribute.

When an attribute is found, it is entered into an array of

attributes. This is a three dimensional array consisting of the node in

which the attribute is found, the type of attribute that is found, and a

number representing the specific occurrence of that type of attribute in

that particular node. This is done so that it is possible to determine

which attributes are passed from one node to another.

After all of the attributes of a transition specification have been

obtained, the network representation of the transition specification is

created. To create the network representation, the arcs between the

nodes need to be established. This is accomplished by taking an

attribute from one node and checking all of the other nodes for a

matching attribute. If a match is detected, the type of attribute is

checked to ensure that communication is viable. Viable communication

occurs when an output attribute matches a control or input attribute of

another node. However, matching attributes do not communicate with each

* other if they are the same type (ie, both output) of attribute. Input

and control attributes do not communicate with each other because

neither attribute causes a change in the other.
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Once all of the arcs have been established, the E-matrix is

created. The E-matrix (nodes by edges) is initialized as a zero

matrix. A specific column of the E-matrix is associated with each arc

as the arc is identified. Rows are identified with the nodes in the

network. Thus, E(2,5) represents the value of node two and edge five.

A value of one is placed in the element if it corresponds to one of the

nodes that is being connected by the arc for the given edge. If the

same arc is identified more than once, only one column is placed into

the E-matrix. Duplicate arcs are temporarily discarded. The network

representation is obtained by matrix multiplication; NR = E * ET.

The C-matrix is obtained by using the generalized network

ETrepresentation formula, NR = E - W - ET . This is also a simple matrix

multiplication operation. The W-matrix (edges by edges) is initialized

as a zero matrix. The element of the W-matrix that provides a weight

for a particular edge is the element that is on the diagonal of the W-

matrix and is in the appropriate column. For example, if the third edge

needs to have a weight of two, then the element W(3,3) = 2. Each weight

is determined and then placed in the diagonal of the W-matrix.

This research allows for the application of three different

weighting schemes. The first case is the simplest; the identity matrix

is used as the W-matrix (W1 = I). The resulting NR-matrix (nodes by

nodes) yields a general description of the network. The elements on the

* diagonal of the matrix indicate the number of nodes with which a

particular node communicates. For example, if element NR(3,3) = 5, then

node three communicates with five other nodes in the network

* representation. Off-diagonal elements indicate whether or not
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communication exists between the node represented by the column and by

the row. In this case, the element is either a one or a zero, a one

indicates that communication exists. The sum of the elements of a row

or column, excluding the element on the diagonal, is equal to the

element that is on the diagonal in that particular row or column.

The second weighting scheme (W2) examined in this research takes

into account the number of attributes that are communicated between two

nodes. While the E-matrix consists of only one entry for a specific

edge, the diagonal of the W-matrix is the number of occurrences of that

particular edge. Suppose that nodes one and three form the fifth edge

in the E-matrix. If three different attributes are communicated from

node one to node three, then the element W(5,5) = 3. The NR-matrix that

results from using this weighting scheme is similar to the NR-matrix

that resulted in the first case. The elements on the diagonal of the NR-

matrix indicate the number of arcs that communicate to and from the

particular node associated with the element. For example, if element

NR(4,4) = 7, then seven arcs exist between node four and the other

nodes. Unlike the previous case, off-diagonal elements may have any non-

negative value. If, for example, element NR(4,2) = 2, then two arcs

exist between node two and node four. This indicates that two different

attributes are being passed between these nodes. As in the previous

case, the sum of tl'? elements of a row or column, excluding the element

on the diagonal, is equal to the element that is on the diagonal in that

particular row or column.

The third weighting scheme (W3) examined in this research takes

* into account the actual number of pieces of information being passed
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throughout the network representation. Subscripts are often used to

* indicate how many of a particular attribute exist. In a transition

specification, these subscripts are often generalized by using a

variable as the subscript. Subscripts are identified as part of the

* attribute. Usually, the communicating attributes have the same

subscripts. On occasion, however, they do not match exactly. When this

happens, the subscript of the control or input attribute is used instead

* of the subscript that is associated with the output attribute. This is

because only the quantity of information used in the control or input

attribute is needed regardless of how much information of a particular

* kind is available. Suppose that aircraft[i] is an output attribute and

that aircraft[l] is a control attribute. Only the value of aircraft[l]

would be passed along the edge connecting the nodes of these

* attributes. If all of the subscripts in a transition specification were

equal to one, then this weighting scheme would be the same as in the

second case. The W-matrix is formed as in the previous case except that

* the number of pieces of information transferred along each arc is taken

into account instead of merely counting the arcs. If three arcs exist

between nodes two and six, then the quantity of each arc's information

* is added together and placed on the appropriate diagonal. For example,

suppose aircraft[i], pilot[j], and loadmaster[k) are the attributes

being passed from node two to six. Now suppose that in this particular

• case i = 3, j = 4, and k = 5. Suppose further that the eighth column in

the W-matrix represents the edge existing between nodes two and six; the

value of element W(8,8) = 12. The NR-matrix that results from using

* this weighting scheme is similar to the NR-matrix that resulted in the
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second case. The diagonal elements of the NR-matrix indicate the number

of pieces of information that are communicated to and from the

particular node associated with the element. For example, if element

NR(7,7) = 17, then 17 pieces of information are being communicated

between node seven and the other nodes. Off-diagonal elements may have

any non-negative value. If element NR(7,5) = 3, then three pieces of

information are being passed between nodes seven and five. Again, the

sum of the elements of a row or column, excluding the element on the

diagonal, is equal to the element that is on the diagonal in that

particular row or column.

Once the NR-matrix is obtained, it is used as the basis for the

principal components analysis. The NR-matrix is actually the C-matrix

used in this analysis. For this analysis, SAS will be used. This

necessitates that the C-matrix be placed in a file that can be used by

SAS. Two options exist for this. The first option is to merely create

an ASCII data file that contains the C-matrix. In this case, the file

that causes SAS to perform the principal components analysis must read

in the data file. The second option is to create a SAS file that

contains the C-matrix without having to call it in from another file.

This research utilized option two because it is simpler to transfer one

file than two. The need for this will be discussed shortly.

The SAS software has a procedure for doing factor analysis. In

this procedure is an option that enables an analyst to do principal

components analysis. Several principal component options are included

in the SAS file that are needed for analyzing the obtained C-matrix.

The first option used is to specify that a covariance matrix is to be
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analyzed rather than a correlation matrix. This covariance matrix is

the C-matrix. The correlation matrix derived from the C-matrix could be

used, but because all of the entries in the C-matrix are based on the

same units, the covariance matrix is used. Another option used is the

"number of factors to be retained" feature. This is used in lieu of

Kaiser's criterion because a covariance matrix is being used. The

computer program that creates the SAS file asks the user to input this

number. The last option used in the SAS file is a varimax rotation.

This option yields a set of rotated component loadings. This is useful

because it prevents all of the component loadings from loading on the

first few factors. This rotation maximizes the variance explained by

each of the factors. These component loadings are then examined for

interpretation. This aids in the explanation of the network being

considered.

An example of the SAS file that is created by the computer program

is given in Figure 2. Any lines that begin with an asterisk are comment

lines. Comments are used to remind the user which type of weighting

scheme was employed for this particular SAS run. They are also used

when the weighting scheme accounts for each piece of information as the

comment statements identify the value given to each of the subscripts.

Diagnostics

Two ASCII files in addition to the "NODE.CMP" file will be found in

the currently logged directory of the user's computer when the program

has finished executing. These files, "INF.DAT" and "ERRORS.DAT", aid

the user in interpreting the results from the computer program.
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OPTIONS LINESIZE = 80;

* E x E';

DATA CONDSPEC;
INPUT N1 N2 N3 N4;
CARDS;

2 1 1 0
1 2 0 1
1 0 1 0
0 1 0 1

PROC PRINT;
PROC FACTOR COV NFACTORS = 2 ROTATE = VARIMAX

VAR Ni N2 N3 N4;

Figure 2. Sample SAS File

The file "INF.DAT" contains information about the network

representation of the transition specification. Each attribute is

listed and the edge that it forms is given by the numbers of the

associated action clusters (node numbers) for reference. The type of

attribute is also given in this file. A numbering system has been

established for convenience. Control attributes are identified by the

number one. Input attributes are identified by the number two, and

output attributes are identified by the number three. The number of the

attribute type is listed next to the node number of the associated

attribute. Also given in this file is the number used in the W-matrix

that corresponds to the specified edge. If the same edge is encountered

more than once, the number corresponding to the last time an edge is

found will be used in the W-matrix. Notice that two numbers for the W-

matrix are given per attribute. The first of these is the value used in

the second weighting scheme, and the second is the value used in the
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third weighting scheme. No number is needed for the first weighting

scheme because the identity matrix is used. An example of what an entry

in this file looks like is

aircraft , 3 1 7 3 4 27

In this case, the attribute "aircraft" is found in nodes three and

seven. In node three, it is a control attribute. In node seven, it is

an output attribute. The number four represents the fourth occurrence

of the edge connecting nodes three and seven. The number 27 represents

the quantity of information being passed along this particular edge. At

the end of the "INF.DAT" file is listed the number of unique edges that

exist in the network representation.

The file "ERRORS.DAT" contains error messages that have been

generated throughout the course of the computer program's execution.

This program identifies two types of inconsistencies so that the user

will have the information necessary to make sure that he has a valid

transition specification. In this research, a valid transition

specification is defined to be a transition specification in which there

exist no unmatched attributes. Unmatched attributes are attributes that

do not form an edge anywhere in the network representation. Attributes

that are key words or teserve words are exempt from this restriction.

The first type of inconsistency that is recorded in the error file

deals with subscripts. Subscript errors occur in two distinct ways.

The first way in which a subscript error can happen is if an attribute

that creates an edge does not have the same dimensions in both of the

connecting nodes. For example, attribute "automobile[i,j]" is

incompatible with attribute "automobile[i]" because the former is two
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dimensional and the latter is one dimensional. Should this occur, it

must be concluded that one of the attributes is incorrect, and an error

message is written to the error file. This message lists the attribute

with the subscripts and the two nodes involved in the edge. The message

also lets the user know that this is a fatal error because it results in

an incorrect assessment of the transition specification. Even though

this is a fatal error, the program will continue to run. This allows

the user to have a complete error file so that he may make all of

necessary changes at one time.

The second way in which a subscript error can occur is when the

subscript does not agree in the connecting nodes. For example,

attribute "part[i]" does not have exactly the same subscript as

attribute "part[j]" does. This may or may not be by design. Because

this may be what was intended, a warning message will be written to the

error file indicating that the subscripts are not an exact match.

However, the user must determine the accuracy of the statements in the

transition specification. One case where this may be what is desired is

when a numerical value is given in a subscript. Attribute "part[iI" may

actually communicate with "part[3]" in the transition specification.

This edge will not be considered in the case where both subscripts are

different numbers. For example "part[21" does not communicate with

"part[3]" in this environment.

The second type of inconsistency recorded in the error file exists

when an attribute in a node does not communicate with another node

anywhere in the transition specification. This may occur because the

user changed the name of the attribute in the middle of his work and
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failed to change all occurrences of that attribute. Perhaps a more

likely reason for this error is that a typographical error was committed

when entering the transition specification. When this inconsistency is

discovered, the name of the attribute is written to the error file. The

node where this attribute is located is given for reference. The type

of attribute (control, input, or output) is also given. This is not

considered a fatal error because this inconsistency may or may not be

intentional. It could result from neglecting to include an attribute in

with the key words or reserve words that should have been put into one

of these categories. The computer program continues to create the

desired network representation until completed.

Syntax Requirements

It was the intent of this research to keep the syntax requirements

of the transition specification to a minimum. Another goal was to keep

them in harmony with previously published requirements. Any changes

made were for the reason of creating a standardized requirement or

simplifying an existing requirement. One major requirement is that each

statement end with a semicolon. This convention is used because it

greatly simplifies locating the end of a statement. The basic syntax

requirements are listed in Table 2. However, a more in depth

explanation of them is given in this section.

Subscripts are placed in square brackets, [I, for ease of

interpretation. This is so that they can be readily distinguished from

called routines such as "poisson(time)" and statements such as "WHEN

ALARM(loadcargo)" which use parentheses. If an attribute has more than
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one dimension, no space is used between the subscripts. For example,

"part[i,j]" is acceptable whereas "part[i, j]" is not.

The assignment statement is relatively free formatted. The

assignment indicator is ":==" for this statement. Usually a space

precedes and follows the assignment indicator. On the left of the

indicator is the attribute to which a value is being assigned. The

value is on the right of the indicator. This value may be a numerical

value or an expression involving attributes. The expression may use -,

+, *, or / as operators. If the expression will not fit on a single

line, a second line may be used with no continuation character

necessary.

The "SET ALARM" statement is more complex than the assignment

statement. This statement is distinguished by the "SET ALARM" which

occurs at the beginning of the statement. The parameters that are

associated with the statement are included in parentheses. There is no

space between the "M" and the "(" in this statement. The first

parameter in the statement is the name of the alarm to be set. This is

an output attribute and may, of course, contain subscripts. The second

parameter is the length of time required to set this alarm. This may be

a numerical value or an attribute. If it is an attribute, it is of the

input variety. A ", " separates these two parameters. Notice that a

space exists after the comma. Both of these parameters are required in

this statement.

The "CREATE" and "DESTROY" statements are nearly identical to each

other. The "CREATE" statement is distinguished by the word "CREATE"

which occurs at the beginning of the statement. The word "DESTROY"
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indicates that particular statement. Two parameters are included inside

parentheses. Again, no space is allowed between the opening parenthesis

and the last letter of the word preceding it. The first parameter is

the object or attribute that is being either created or destroyed. This

attribute is given without the subscript. The second parameter is the

subscript that is associated with the attribute. Again, a comma

followed by a space separates the two parameters. However, in this case

the second parameter is not required. If it is not used, simply place

the closing parenthesis after the first parameter. Do not place a comma

after the first parameter in this case. An output attribute is

associated with the "CREATE" statement, and an input attribute

corresponds to the "DESTROY" statement.

The "WHEN ALARM" statement is distinguished by the words "WHEN

ALARM" at the beginning of the statement. Its parameters are enclosed

in parentheses with the same restrictions as the other statements. The

first parameter is an expression involving an attribute. This

expression may be given in two forms. The first form is merely naming

the attribute. For example, "WHEN ALARM(eject[il);" enables this action

cluster whenever "eject[iI" is encountered. The second form of the

expression involves relational operators. For example, "WHEN

ALARM(eject[i] = 2);" enables this action cluster when the value of

"eject[i]" = 2. A space precedes and follows the relational operator.

Two conditions may be in the same statement if connected by an

ampersand. For example, "WHEN ALARM(eject[iI = 2 & fire[i] = true);" is

a valid statement. A space precedes and follows the ampersand. The
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attribute on the left of the operator is a control attribute while the

one of the right is an input attribute.

A statement that is related to the "WHEN ALARM" statement is the

"WHEN" statement. However, this statement does not use parentheses. It

does have a conditional expression that activates the statements in the

action cluster. This expression follows the same syntax as in the "WHEN

ALARM" statement. It also may have two conditions in the same

statement.

A new action cluster or node is distinguished by an opening brace,

{, at the beginning of the statement. What follows the brace is taken

to be the name of the node. A closing brace, }, designates the end of

the node name. If the node is the initialization or termination point

in the transition specification, it should be so named. When the node

names "Initialization" or "initialization" or "Termination" or

"termination" are found, the action cluster is disregarded in the

decomposition process. This is because often these nodes communicate

with a majority of the nodes merely to start or finish the simulation.

Therefore, these nodes lend no structure to the model. This phase of

the syntax structure is slightly different than what has been done in

the past. However, it does not deviate from the former conventions to

an extent that this researcher considered unacceptable.

Comment statements are the last type of statement to be

considered. This is a free formatted statement with one exception. It

cannot conform to the syntax of one of the previously discussed

statements. These statements are read by the computer program but not

considered in the decomposition process.
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The methodology developed in this research was tested using two

different transition specifications. The results from the testing,

given in the next chapter, verify the procedures that were used in this

technique. A simple guide on how to use the software developed can be

found in Appendix A. The actual BASIC code is listed in Appendix L.
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I1. Analysis of Example Transition Specifications

Introduction

Two example transition specifications were decomposed in this

study. The first example was a simple transition specification which,

when represented as a network, consisted of six nodes. The model in the

second example had 15 nodes in its network representation. In each of

these examples, the three different weighting schemes were used yielding

three distinct C-matrices for each example. The C-matrices were then

independently analyzed using principal components analysis.

The simple example was also used to examine the effects of

considering the time delay involved in the flow of information from one

node to another. In this brief look at how time affects the network

structure, the only time delay taken into account was the delay incurred

from the setting of an alarm until the alarm was activated.

A Simple Example

The first transition specification examined was the Repairman

Example (Nance and Overstreet, 1986:11). The transition specification

was slightly modified so that it conformed to the syntax required to

utilize the newly developed decomposition software. This transformed

transition specification can be found in Appendix B.

The program provided the diagnostics given in Appendix C. An

illustration of the network representation for this transition

specification is given in Figure 3. The action clusters or nodes for

this transition specification were defined as shown in Table 3 below.

When prompted for a subscript value, the value five was used. This is

the number of facilities in the simulation. Each of the weighting
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schemes was used (option seven of the matrix multiplication menu). The

SAS file that was created by the software is given in Appendix D. This

file was uploaded to a Vax 11/785 using Xmodem protocol. The SAS file

was executed and yielded the results given in Appendix E.

Table 3. Repairman Example Nodes

Node Node Name

1 Failure
2 Begin repair
3 End Repair
4 Travel to idle
5 Arrive idle
6 Travel to facility

For the first of the three matrix multiplications (E . E'), four

factors explained 92.21 percent of the variance of the model. Three

factors explained only 75.24 percent of the variance, so four factors

were retained for the analysis. After the varimax rotation, the nodes

that loaded on each factor are shown in Table 4.

Table 4. Rotated Factor Pairings (Example 1 - Case 1)

Factor Nodes

1 End repair, Arrive idle
2 Failure, Bgin repair
3 Travel to facility
4 Travel to idle

The six nodes have been decomposed into four factors which when

interpreted provide insight into the structure of the network

representation. The "Arrive idle" node occurs when the repairman has

* completed all of the repair work that has been called in, arrives at his
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Figure 3. Network Representation of Repairman Example
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office, and is waiting to go on another call. The fact that this node

is paired with "End repair" makes perfect sense. One possible name for

factor one is "Finished work orders" because the two nodes combined

represent just that. The second factor combines the "Failure" and

"Begin repair" nodes. This is logical because the beginning of a repair

is quite dependent upon the time that the system fails. "Work needed"

is a possible name for the second factor. This is because work is

required when a system fails and when the repair process is started.

Because factors three and four have only one node associated with them,

a simple way to name these factors is just to retain the node name as

their factor name.

The number of factors chosen was based on retaining the fewest

factors which would sufficiently explain the structure of the network.

This explanation included a logical interpretation of the factors as

well as explaining a reasonable amount of the model's variance. More

than one SAS run was made to acquire this information. When nodes

loaded consistently on factors in more than one SAS run, a degree of

structure was indicated in the model.

For the second of the three matrix multiplications (E . W2 E'),

three factors explained 83.98 percent of the variance of the model. Two

factors explained only 69.70 percent of the variance, so three factors

were retained for the analysis. After the varimax rotation, the nodes

that loaded on each factor are given in Table 5.

Notice that in this case, the "Failure" node does not load on any

factor. This node had weak loadings on the first and second factors,

but never had a loading with a magnitude greater than or equal to 0.5
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which was used as the criterion for factor loading. As in the previous

case, factor one is comprised of the "End repair" and "Arrive idle"

nodes. This factor can again be labeled as the "Finished work orders"

factor. The second factor in this case combines the "Begin repair" and

"Travel to facility" nodes. This is reasonable because the beginning of

a repair depends on when the repairman travels to the facility where the

repair work is needed. "Work needed" is again a possible name for the

second factor. This is because work is still outstanding while a

repairman is traveling to the repair site and when the repair process is

started. Because factor three has only one node associated with it, the

obvious choice for a factor name is the same as the node name.

Table 5. Rotated Factor Pairings (Example 1 - Case 2)

Factor Nodes

1 End repair, Arrive idle
2 Begin repair, Travel to facility
3 Travel to idle

For the third of the three matrix multiplications (E - W3 E'),

three factors explained 86.63 percent of the variance of the model. Two

factors explained only 71.65 percent of the variance, so three factors

were retained for the analysis. After the varimax rotation, the nodes

that loaded on each factor are given in Table 6.

As in each of the previous cases, factor one is comprised of the

"End repair" and "Arrive idle" nodes. This factor can again be label as

the "Finished work orders" factor. The second factor in this case

combines the "Travel to idle" and "Travel to facility" nodes. This is

38



logical in light of the fact that a repairman will often have to go to

his office to await a call. Once a call is received, he then must

travel to the facility to do his job. "Between work orders" is a

possible name for the second factor. The third factor "Failure" and

"Begin repair" has an obvious relationship. These two nodes combine

into a factor which could be called the "Time awaiting repairman"

factor.

Table 6. Rotated Factor Pairings (Example 1 - Case 3)

Factor Nodes

1 End repair, Arrive idle
2 Travel to idle, Travel to facility
3 Failure, Begin repair

The three different weighting schemes used in this simple example

provide similar, although not exactly the same, results. The factors

may be compared in Table 7. The factor names could very well have been

something else as they are merely an interpretation of the rotated

factor pairings. These factors break the network representation of the

transition specification into sub-networks which could be used as a

means of distributing work load in the development of the full

simulation model.

Table 7. Repairman Example Factor Names

Factor Case 1 Case 2 Case 3

1 Finished work orders Finished work orders Finished work orders
2 Work needed Work needed Between work orders

* 3 Travel to facility Travel to idle Time awaiting repairman
4 Travel to idle
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A More Complicated Example

The second transition specification examined was the computerized

manufacturing systems model (Talavage, 1986:1-3) or Manufacturing

Example. The transition specification was modified so that it conformed

to the syntax required to utilize the newly developed decomposition

software. This transformed transition specification can be found in

Appendix F.

The program provided the diagnostics given in Appendix G. Despite

the fact that several fatal errors occurred, the analysis was continued

because this research was not concerned with the correctness of the

simulation, but rather with illustrating how a simulation can be

decomposed. An illustration of the network representation for this

transition specification is given in Figure 4. The action clusters or

nodes for this transition specification were defined as shown in Table

8. When prompted for a subscript value, the value five was used. Each

of the weighting schemes was used (option seven of the matrix

multiplication menu). The SAS file that was created by the software is

given in Appendix H. This file was uploaded to a Vax 11/785 using

Xmodem protocol. The SAS file was executed and yielded the results

given in Appendix I.

For the first of the three matrix multiplications (E . E'), six

factors which were retained for analysis explained 81.96 percent of the

variance of the model. After the varimax rotation, the nodes that

loaded on each factor are given in Table 9.
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Table 8. Manufacturing Example Nodes

Node Node Name Alias

1 operation completed for part i on machine j opcomm
2 part i to off-shuttle position k of machine j offshul
3 part i in off-shuttle position k of machine j offshu2
4 operations completed for part i opcom
5 next operation for part i nextop
6 next station for next operation for part i nextsta
7 find cart for part i findcart
8 move cart j to pickup part i mvcart
9 cart j arrives to pickup part i cartarrp

10 part i arrives onto cart j part-cart
11 cart j arrives to drop off part i at machine k cartarrd
12 part i arrives into on-shuttle onshu
13 part i can move into machine mchldl
14 part i moves into machine mchld2
15 next part from queue selected to move into machine mchld3

The 15 nodes have been decomposed into six factors which, when

interpreted, provide insight into the structure of the network

representation. The four nodes that make up factor one are related to

each other as they are the completion of a part's cycle in the model.

One possible name for factor one is "Part Operations Completed" because

the four nodes combined represent just that. The second factor is

composed of nodes that deal with the getting a cart ready so that it can

carry a part from one location to another. At this point, a cart is

Table 9. Rotated Factor Pairings (Example 2 - Case 1)

Factor Nodes

1 opcomm, offshu2, opcom, nextop
2 findcart, mvcart, part-cart
3 nextsta, cartarrp, cartarrd
4 mchldl, mchld2
5 offshul

6 onshu
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found, summoned, and then loaded. The name "Get Cart for Part" can be

applied to this factor. The third factor involves moving the part from

one machine to another. A cart picks up the part and moves it to the

next station where it drops it off. The name "Move Part to Next

Station" can be applied to factor three. The fourth factor combines the

"mchldl" and "mchld2" nodes. This makes sense because both of these

activities are required to load a part into a machine. "Load Part Into

Machine" is a possible name for the fourth factor. Because factors five

and six have only one node associated with them, the obvious method of

naming these factors was to give them their respective node name. The

node "mchld3" did not load well on any of the six factors retained in

this analysis.

For the second of the three matrix multiplications (E . W2 . E'),

six factors retained for analysis explained 85.84 percent of the

variance of the model. After the varimax rotation, the nodes that

loaded on each factor are given in Table 10.

Table 10. Rotated Factor Pairings (Example 2 - Case 2)

Factor Nodes

1 nextop, mvcart, cartarrp, part-cart
2 cartarrd, onshu
3 opcom, mchld2, mchld3
4 opcomm, nextsta, findcart
5 offshul, offshu2
6 mchldl

The four nodes that make up factor one are related to each other as

each is a step in a process to get a part ready for the upcoming

operation. One possible name for factor one is "Prepare Part for Next
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Operation" because the four nodes that are combined perform this

function. The second factor is composed of two nodes which together

enable a part to arrive at the on-shuttle. The name "Part Arrives On-

Shuttle" can be applied to this factor. The third factor encompasses

the completion of operations for a part. The name "Part Operations

Completed" can be applied to factor three. The fourth factor consists

of the "opcomm", "nextsta" and "findcart" nodes. These three nodes

ensure that a part is ready for the next operation. "Part Ready for

Next Operation" is a name that could be given to this factor. This

factor is slightly different than factor one. Factor one is a process

of preparing a part for the next operation, whereas factor four is

indicative of a part that is ready for the next operation. The fifth

factor combines the "offshul" and "offshu2" nodes. This make sense

because both of these activities are required for a part to be in the

off-shuttle position of a machine. "Part Off-Shuttle" is a possible

name for the fifth factor. Factor six has only one node associated with

it, so again the factor was given the same name as its only node.

For the last of the three matrix multiplications (E - W3 E'),

seven factors retained for analysis explained 99.61 percent of the

variance of the model. After the varimax rotation, the nodes that

loaded on each factor are given in Table 11.

In this case, the 15 nodes were decomposed into seven factors. The

two nodes that combine to become factor one make a logical pair because

dropping a part off at a machine and the part going into the on-shuttle

position are activities which are closely related. One possible name

for factor one is "Part Arrives On-Shuttle." The second factor is
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Figure 4. Network Representation of Manufacturing Example
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composed of two nodes that deal with the getting a cart ready for its

next operation. The nodes "nextop" and "nextsta" combine to form a

factor which could be called "Part Ready for Next Operation." The third

factor includes four factors that prepare a part to be placed in the off-

shuttle position of a machine. These factors include loading the part

into a cart and putting the part in its position. The name "Part Off-

Shuttle" can be applied to factor three. The fourth factor is one in

which the cart is obtained for the part to be transported. "Get Cart"

is one name for factor four, which is made up of the "findcart" and

"mvcart" nodes. The fifth factor combines the "mchld2" and "mchld3"

nodes. This makes sense because both of these activities are required

to load a part into a machine. "Load Part Into Machine" is a possible

name for the fifth factor. Once again, two of the factors have only one

node associated with them. By previous convention, these factors (six

and seven) keep the node name as their factor names. The node "opcom"

did not load well on any of the seven factors retained in this analysis.

Table 11. Rotated Factor Pairings (Example 2 - Case 3)

Factor Nodes

1 cartarrd, onshu
2 nextop, nextsta
3 cartarrp, part-cart, offshul, offshu2

4 findcart, mvcart
5 mchld2, mchld3
6 opcomm
7 mchldl

The three different weighting schemes used in this example provide

similar, although not exactly the same, results. Table 12 summarizes
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the factor interpretations. These factor names could very well have

been something else as they are merely an interpretation of the rotated

factor pairings. As in the previous example, these factors break the

network representation of the transition specification into sub-networks

which could be used as a means of distributing work load in the

development of the full simulation model. Instead of having to work

directly with 15 nodes, the model developer need only work with the

number of factors involved in a specified case.

Table 12. Manufacturing Example Factor Names

Factor Case 1 Case 2

1 Part Operations Completed Prepare Part for Next Operation
2 Get Cart for Part Part Arrives On-Shuttle
3 Move Part to Next Station Part Operations Completed
4 Load Part Into Machine Part Ready for Next Operation
5 Part to Off-Shuttle Position Part Off-Shuttle
6 Part Arrives On-Shuttle Part Can Move Into Machine

Factor Case 3

1 Part Arrives On-Shuttle
2 Part Ready for Next Operation
3 Part Off-Shuttle
4 Get Cart
5 Load Part Into Machine
6 Part Operation Completed on Machine
7 Part Can Move Into Machine

A Brief Examination of Time-Based Signals

Another type of weighting scheme is one based on the length of time

information takes to travel along the edge between nodes. In the "SET

ALARM" statement the second parameter is the time required until the

alarm is activated. This parameter was used as an input (t) to a
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-. 25

weighting function. This function was Weight = 10 e 2 t. This

function was chosen because more emphasis was desired on events that

happen in the near future versus the distant future. The value 10 is a

scaling constant, and the value -.025 reflects the rate of declining

emphasis placed on time-based information.

The Repairman Example examined previously was again used. It has

four "SET ALARM" statements. Each of these required an input for the

time delay. A mean of 520 hours was chosen as the time delay between

the repairing of a system and its failure. This number was based on 13

weeks at 40 hours per week of system utilization. The mean time chosen

for travel to the facility and travel back to the office was one hour.

The amount of time required to perform the repair work needed was

estimated to be three hours. These times were entered into the weight

function as needed. A new C-matrix was then obtained to analyze.

Because this involves the pieces of information flowing on an edge, the

W-matrix used was merely a modified version of the W-matrix used in the

third case in the Repairman Example considered previously. The SAS input

for this example is in Appendix J.

Three factors explained 83.37 percent of the variance of the

model. After the varimax rotation, the nodes that loaded on each factor

are given in Table 13.

The six nodes have been decomposed into the same three factors

which occurred in the third case of the simple example. (The SAS output

from this example is in Appendix K.) This is not totally unexpected due

to the small number of nodes and time-based signals in the network. It

was anticipated that this weighting scheme would shed some light on
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which of the three world views would provide the best means of

formulation -- event scheduling, activity scanning, or process

interaction. Because the time-based signal results do not differ from

the results that were not a function of time, the results obtained may

indicate that the Repairman Example is not sensitive to time and should

be considered from the event scheduling viewpoint.

Table 13. Rotated Factor Pairings (Time-Based Example)

Factor Nodes

1 End repair, Arrive idle
2 Travel to idle, Travel to facility
3 Failure, Begin repair
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V. Findings

Conclusions

Representing a discrete event simulation model's condition

specification as a network is beneficial. This network can be

decomposed so that the individual developing the model can take

advantage of the structure of the model. Once the network

representation is translated into an edge-incidence matrix, the

developer can perform so matrix calculations in order to obtain a pseudo-

covariance matrix (C-matrix). The C-matrix was then used as the input

data set during principal components analysis.

Applying various weighting schemes to the C-matrix enabled the

analyst to have a better understanding of what exactly was happening in

the network representation. Using the first weighting scheme resulted

in obtaining information necessary to illustrate the network

representation. The second weighting scheme provides the analyst with

information concerning the number of attributes that are being sent

along each edge in the network. The third weighting scheme yields

results which enable a network representation to illustrate the flow of

every piece of information in the simulation.

Performing principal components analysis on the C-matrix enabled

the analyst to ascertain what the key factors were in the network

representation. These factors formed logical clusters of nodes which

decomposed the model into meaningful sub-models. Once these factors

have been determined, the results are interpreted based on their factor

composition.
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Automating the decomposition process tremendously enhances the

overall effectiveness of analyzing a discrete event simulation model.

This eliminates the numerous mistakes that often occur when not taking

advantage of the computer's ability to extract data and perform

calculations without error.

Several types of diagnostics have been included in the computer

program. These diagnostics provide the user with feedback on the

composition of the network representation of the model as well as alert

the analyst to any inconsistencies that may be present in the transition

specification.

Recommendations

This research has opened several potential areas for further

research. Improving diagnostics is one area of interest. Being able to

correctly create a transition specification is vital to doing any kind

of work in the area of model decomposition. It is important to detect

errors at the earliest possible time so that the analyst does not

continue to work in an errant ;irection with potentially misleading

results. Real-time error handling and correction procedures could be

added to computer programs that will further automate the decomposition

process. Other possible enhancements may become obvious as the computer

program developed in this research is utilized.

Another potential area in which enhancements to this research may

be made is the incorporation of additional transition specification

statements into the decomposition software. Two types of statements

that were not included in this research are the "AFTER ALARM" and

"CANCEL ALARM" statements. These and any statements which may be
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developed in the future can and should be incorporated into a computer

program, perhaps as an extension to the one developed in this research.

An additional area of interest is the manner in which W-matrices

are constructed. Weighting schemes play an important role in the

decomposition process. This is, perhaps, the area with the greatest

potential for improvement. One particular weighting scheme that should

be examined in the future is weighting edges based on the length of time

it takes to pass information along a given edge. An extremely brief

attempt at employing this type of scheme was developed in this

research. Much more attention should be given to this area,

particularly with large examples.

One final area of interest is the comparison between the sub-models

that are obtained from a transition specification. Although the

difference in the sub-models is slight, the manner in which the sub-

models would be partitioned out to computer programmers would vary.

When these sub-models are assimilated into the final simulation model,

the efficiency and validity of the model should be compared to those

aspects of a model that is comprised of similar, but different, sub-

models.
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Appendix A. How to Implement the Computer Program

Once a SAS file has been created, it needs to be uploaded to a

mainframe computer which has SAS resident on it. This step is necessary

to do the principal components analysis. Uploading the SAS file is done

by using a file transfer program. Two common means by which to upload

files from a personal computer to a mainframe are using the Kermit or

Xmodem file transfer programs. After the SAS file has been uploaded to

the mainframe, make sure that SAS has been invoked on the mainframe. If

the SAS filename is NETWORK.SAS, then the file may be processed by

entering the statement "SAS NETWORK" into the computer. This is but one

way to run SAS. This may vary among mainframe computer systems. It is

best to check with people who are familiar with the local computer

facility.

Naturally it is necessary to first create the SAS file so that it

can be uploaded. To do this requires implementing the computer program

written as a part of this research. After placing the floppy disk into

the disk drive, type "DECOMP" to begin the program.

The first input that the user is required to give is the number of

key words used in the transition specification. Key words are any words

which the user does not wish to have classified as an attribute. For

example, "system-time" would normally appear as an input attribute.

"System-time" is an attribute that will not affect the network

representation because it is used only as an input attribute. Therefore

it is not possible to make an edge with this attribute. Once the number

of key words has been entered, the user is asked to input those key
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words into the computer. This must be exactly what the user intends.

This program does not ignore the case of letters. Upper case and lower

case letters are not interpreted to be the same. If the user enters a

"0" for the number of key words, he will not, of course, be prompted to

enter any key words. An ASCII file called "RESERVE.WRD" has been

created for key words that frequently occur in various transition

specifications. To add words to this file the user must edit the file

before running the "DECOMP" program. Key words may also be deleted from

this file as desired.

After the user has finished inputting information about key words,

the computer will prompt the user for the name of the transition

specification to be analyzed. This transition specification needs to

have been created before running this program. It also has to be in

ASCII format. The program will then open the file containing the

transition specification and read it into memory.

Once this operation is completed, the action clusters and their

associated attributes are identified. These are written to an ASCII

file called "NODF.CMP" (a diagnostir file) and also displayed on the

screen of the personal computer. After the user has finished viewing

the last action cluster's attributes, the program examines each of the

attributes for any subscript notation. If one or more subscripts are

found, a determination is made to find out if the subscript is a

variable. If it is a variable, then the user will be asked to input the

maximum value of the subscript. For example, if the attribute

"aircraft[i]" is found, then the "i" is determined to be a subscript.

The program realizes that this is not a numeric value, so it prompts the
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user for a value. If 13 aircraft were involved in this transition

specification, the user would enter a value of 13 at this point. After

all of the subscript maximum values have been entered, the program finds

the network representation of the transition specification. The E-

matrix is then created from the network representation. Once the E-

matrix has been created, a menu appears on the screen giving the user a

choice of which weighting scheme is to be employed. This menu is

illustrated in Figure 5. All three weighting schemes may be examined

with only one run of this program. It does not matter in the

development of the SAS file if more than one weighting scheme is

chosen. Only one SAS file will be created, but the desired principal

components analysis will be performed on each of the chosen weighting

schemes. The user is prompted by the program to supply a name for the

SAS file. After the user chooses which weighting scheme he will use, he

is prompted to enter the desired percentage of the variance to be

explained. This will determine how many factors are retained in the

principal components analysis. The SAS file is then created using the

userss input for both the weighting scheme and the number of factors to

be retained. As each C-matrix is calculated, the results are printed on

the computer screen. After viewing these results, type any key to

continue the program. After the program finishes writing the SAS file,

the program is completed.
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OPTIONS OF MATRIX MULTIPLICATIONS

1. ExE'

2. ExW2xE'

3. ExW3xE'

4. BOTH 1 & 2

5. BOTH 1 & 3

6. BOTH 2 & 3

7. ALL 3 (1 & 2 & 3)

ENTER CHOICE

Figure 5. Matrix Multiplication Menu

10
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Appendix B. Repairman Example Transition Specification

(Initialization)
WHEN Initialization

INPUT(n, max repairs, mean uptime, meanrepairtime )
CREATE repairman AN object WITH

location :=idle;
status:== avail;
END WITH

CREATE facility A pset WITH INDEX i :l..n ALSO
failedii :==false;
total -downtiueli] :=0;
SET ALARM(failure[iI, neg exp(mean uptime));
END WITH;

DEFINE down A d -set OF facility WITH failed[i] = true;
num-repairs :=0;

*END WHEN

{Termination)
##WHEN nunrepairs r max repairs

FOR i :== 1 TO n DO
percent downtimelil :== total downtimeli] /system time;
OUTPUT(i, total downtime[iI,);

*END FOR
STOP

*END WHEN

(Failure)
WHEN ALARM(failure[i]);

failedii := true;
begin..downtime[i] :=system-time;

*END WHEN

{Begin repair)
WHEN ALARM(arrfacility[iI);

SET ALARM(end-repairfi], negexp(meanrepairtime));
status :== busy;
location:=

*END WHEN

(End repair)
WHEN ALARM(end_repairil]);

SET ALARM( failure[ ii, neg exp(mean uptime));
failed[i] :== false;
total-downtime[ij :== total -downtimefiI +

(systemtime - begin downtime[ ii);
status :== avail;
num-repairs :=num_repairs +- 1;

*END WHEN
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(Travel to idle)
## WHEN failedflil =true & status = avail & location 0) idle;

* SET ALARM(arr-idle, traveltime(location, idle));
status :== travel;

*END WHEN

(Arrive idle)
WHEN ALARM(arr idle);

* status :== avail;
location :== idle;

*END WHEN

{Travel to facility)
WHEN status =avail & failed[i] = false;

* 1 :== closest-failed-fac(failed[iI, location);
SET ALARM(arr-facility[i], traveltime

(location, M);
status :== travel;

*END WHEN
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Appendix C. Repairman Example Diagnostics

NODE.CMP

NODE 3 Failure

CONTROL ATTRIBUTE failure[i]
OUTPUT ATTRIBUTE failed[i]
OUTPUT ATTRIBUTE begindowntime[i]

NODE 4 Begin repair

CONTROL ATTRIBUTE arrfacility[i]
OUTPUT ATTRIBUTE end repair[i]
INPUT ATTRIBUTE meanrepairtime

OUTPUT ATTRIBUTE status
INPUT ATTRIBUTE i

OUTPUT ATTRIBUTE location

NODE 5 End repair

CONTROL ATTRIBUTE endrepair[i]
OUTPUT ATTRIBUTE failurelil
INPUT ATTRIBUTE mean uptime

OUTPUT ATTRIBUTE failed[i]
INPUT ATTRIBUTE total downtime[i]
INPUT ATTRIBUTE begin downtime[i]

OUTPUT ATTRIBUTE totaldowntime[i]
OUTPUT ATTRIBUTE status
INPUT ATTRIBUTE num repairs

OUTPUT ATTRIBUTE num repairs

NODE 6 Travel to idle

CONTROL ATTRIBUTE failed[i]
CONTROL ATTRIBUTE status
CONTROL ATTRIBUTE location
OUTPUT ATTRIBUTE arridle
INPUT ATTRIBUTE location

OUTPUT ATTRIBUTE status

NODE 7 Arrive idle

CONTROL ATTRIBUTE arridle
OUTPUT ATTRIBUTE status
OUTPUT ATTRIBUTE location
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NODE 8 Travel to facility

CONTROL ATTRIBUTE status
CONTROL ATTRIBUTE i]

INPUT ATTRIBUTE failed[i]
INPUT ATTRIBUTE location

OUTPUT ATTRIBUTE i
OJTPUT ATTRIBUTE arrfacility[ij
INPUT ATTRIBUTE location
INPUT ATTRIBUTE i

OUTPUT ATTRIBUTE status

ERRORS.DAT

NON-MATCHING SUBSCRIPTS

NODE ATTRIBUTE NODE ATTRIBUTE

ATTRIBUTES WITHOUT A COUNTERPART

ATTRIBUTE NODE TYPE

meanrepairtime 4 INPUT
meqn_uptime 5 INPUT
totaldowntime 5 INPUT
numnrepairs 5 INPUT
totaldowntime 5 OUTPUT
numrepairs 5 OUTPUT

INF.DAT

ATTRIBUTE NODE C/I/O NODE C/I/O Wl W2
failure , 3 1 5 3 1 5
failed , 3 3 6 1 1 5
failed , 3 3 8 1 1 5
begin-downtime , 3 3 5 2 2 10
arrfacility , 4 1 8 3 1 5
i , 4 2 8 3 2 6
end repair , 4 3 5 1 1 5
status , 4 3 6 1 1 1
status , 4 3 8 1 3 7
location , 4 3 6 1 2 2
location , 4 3 8 2 4 8
failed , 5 3 6 1 1 5
failed , 5 3 8 1 1 5
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status , 5 3 6 1 2 6
status , 5 3 8 1 2 6
status , 6 1 7 3 1 1
status , 6 1 8 3 1 1
location , 6 1 7 3 2 2
arr idle , 6 3 7 1 3 3
status , 6 3 8 1 2 2
status , 7 3 8 1 1 1
location , 7 3 8 2 2 2

NUMBER OF EDGES =22
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Appendix D. Repairman Example SAS Input File

OPTIONS LINESIZE=80;

* E x E';

DATA CONDSPEC;
INPUT NI N2 N3 N4 N5 N6
CARDS;

3 0 1 1 0 1
0 3 1 1 0 1
1 1 4 1 0 1
1 1 1 5 1 1
O 0 0 1 2 1
1 1 1 1 1 5

PROC PRINT;
PROC FACTOR COV NFACTORS = 4 ROTATE=VARIMAX

VAR Ni N2 N3 N4 N5 N6

* E x W2 x E';

DATA CONDSPEC;
INPUT NI N2 N3 N4 N5 N6
CARDS;

4 0 2 1 0 1
0 7 1 2 0 4
2 1 7 2 0 2
1 2 2 10 3 2
0 0 0 3 5 2
1 4 2 2 2 11

PROC PRINT;
PROC FACTOR COV NFACTORS = 3 ROTATE=VARIMAX

VAR Ni N2 N3 N4 N5 N6

* E x W3 x E';

DATA CONDSPEC;
INPUT Ni N2 N3 N4 N5 N6;
CARDS;

20 0 10 5 0 5
0 15 5 2 0 8
10 5 27 6 0 6
5 2 6 18 3 2
0 0 0 3 5 2
5 8 6 2 2 23

PROC PRINT;
PROC FACTOR COV NFACTORS = 3 ROTATE=VARIMAX

VAR N1 N2 N3 N4 N5 N6
* = 5 ;
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Appendix E. Repairman Example SAS Output File

*SAS 20:44 FRIDAY, NOVEMBER 4, 19881

OBS Ni N2 N3 N4 N5 N6

1 3 0 1 1 0 1
2 0 3 1 1 0 1

*3 1 1 4 1 0 1
4 1 1 1 5 1 1
5 0 0 0 1 2 1
6 1 1 1 1 1 5
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SAS 20:44 FRIDAY, NOVEMBER 4, 1988 2

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

PRIOR COMMUNALITY ESTIMATES: ONE

EIGENVALUES OF THE COVARIANCE MATRIX: TOTAL = 10.2667 AVERAGE = 1.7111

1 2 3 4 5 6
EIGENVALUE 3.200000 2.724364 1.800000 1.742303 0.800000 0.000000
DIFFERENCE 0.475636 0.924364 0.057697 0.942303 0.800000
PROPORTION 0.3117 0.2654 0.1753 0.1697 0.0779 0.0000
CUMULATIVE 0.3117 0.5770 0.7524 0.9221 1.0000 1.0000

4 FACTORS WILL BE RETAINED BY THE NFACTOR CRITERION

FACTOR PATTERN

FACTOR1 FACTOR2 FACTOR3 FACTOR4

Ni -0.00000 -0.19707 0.86603 0.21094
N2 -0.00000 -0.19707 -0.86603 0.21094
N3 -0.00000 -0.77013 -0.00000 0.54749
N4 0.77460 0.46214 -0.00000 0.43177
N5 0.00000 0.75988 -0.00000 -0.35012
N6 -0.77460 0.46214 0.00000 0.43177

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1 FACTOR2 FACTOR3 FACTOR4
WEIGHTED 3.200000 2.724364 1.800000 1.742303
UNWEIGHTED 1.200000 1.675350 1.500000 0.884174

FINAL COM[MUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 9.466667 UNWEIGHTED = 5.259524

Ni N2 N3 N4 N5 N6
COMMUNALITY 6.833333 0.833333 0.892857 1.000000 0.700000 1.000000
WEIGHT 1.200000 1.200000 1.866667 2.666667 0.666667 2.666667
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SAS 20:44 FRIDAY, NOVEMBER 4, 1988 3

ROTATION METHOD: VARIMAX

ORTHOGONAL TRANSFORMATION MATRIX

1 2 3 4

1 -0.00008 -0.00000 -0.70713 0.70709
2 -0.80002 0.00000 0.42428 0.42421
3 0.00000 1.00000 0.00000 0.00000
4 0.59997 -0.00000 0.56565 0.56575

ROTATED FACTOR PATTERN

FACTORi FACTOR2 FACTOR3 FACTOR4

Ni 0.28422 0.86603 0.03570 0.03574
N2 0.28422 -0.86603 0.03570 0.03574
N3 0.94461 -0.00000 -0.01706 -0.01695
N4 -0.11074 -0.00000 -0.10743 0.98803
N5 -0.81798 -0.00000 0.12435 0.12426
N6 -0.11062 -0.00000 0.98804 -0.10739

VARIANCE EXPLAINED BY EACH FACTOR

FACTORI FACTOR2 FACTOR3 FACTOR4
WEIGHTED 2.370860 1.800000 2.647972 2.647835
UNWEIGHTED 1.747438 1.500000 1.006076 1.006010

FINAL CO.MMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 9.466667 UNWEIGHTED = 5.259524

Ni N2 N3 N4 N5 N6
COMMUNALITY 0.833333 0.833333 0.892857 1.000000 0.700000 1.000000
WEIGHT 1.200000 1.200000 1.866667 2.666667 0.666667 2.666667
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SAS 20:44 FRIDAY, NOVEMBER 4, 1988 4

OBS Ni N2 N3 N4 N5 N6

1 4 0 2 1 0 1
2 0 7 1 2 0 4
3 2 1 7 2 0 2
4 1 2 2 10 3 2
5 0 0 0 3 5 2
6 1 4 2 2 2 11
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SAS 20:44 FRIDAY, NOVEMBER 4, 1988 5

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

PRIOR COMMUNALITY ESTIMATES: ONE

EIGENVALUES OF THE COVARIANCE MATRIX: TOTAL = 44.8 AVERAGE = 7.46667

1 2 3 4 5 6

EIGENVALUE 18.241880 12.982349 6.400000 5.389726 1.786045 0.000000
DIFFERENCE 5.259530 6.582349 1.010274 3.603680 1.786045
PROPORTION 0.4072 0.2898 0.1429 0.1203 0.0399 0.0000
CUMULATIVE 0.4072 0.6970 0.8398 0.9601 1.0000 1.0000

3 FACTORS WILL BE RETAINED BY THE NFACTOR CRITERION

FACTOR PATTERN

FACTOR1 FACTOR2 FACTOR3

NI -0.33934 -0.63298 0.07329
N2 0.72778 0.19465 0.39034
N3 -0.16171 -0.53780 0.63777
N4 -0.40546 0.82464 0.36485
N5 -0.17743 0.71286 -0.56980
N6 0.92711 0.16996 -0.01975

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1 FACTOR2 FACTOR3
WEIGHTED 18.241880 12.982349 6.400000
UNWEIGHTED 1.726389 1.944871 1.022672

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 37.624229 UNWEIGHTED = 4.693932

Ni N2 N3 N4 N5 N6
COMMUNALITY 0.521194 0.719921 0.722135 0.977550 0.864312 0.888819
WEIGHT 2.266667 7.466667 5.866667 11.066667 4.266667 13.866667
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SAS 20:44 FRIDAY, NOVEMBER 4, 1988 6

ROTATION METHOD: VARIMAX

ORTHOGONAL TRANSFORMATION MATRIX

1 2 3

1 -0.06883 0.92202 -0.38097
2 -0.60766 0.26412 0.74899
3 0.79121 0.28305 0.54210

ROTATED FACTOR PATTERN

FACTOR1 FACTOR2 FACTOR3

Ni 0.46598 -0.45932 -0.30509
N2 0.14047 0.83293 0.08013
N3 0.84254 -0.11062 0.00454
N4 -0.18452 -0.05277 0.96991
N5 -0.87179 -0.13660 0.29263
N6 -0.18272 0.89412 -0.23661

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1 FACTOR2 FACTOR3
WEIGHTED 8.886661 16.926245 11.811323
UNWEIGHTED 1.774207 1.737870 1.181855

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 37.624229 UNWEIGHTED = 4.693932

NI N2 N3 N4 N5 N6
COMMUNALITY 0.521194 0.719921 0.722135 0.977550 0.864312 -0.888819
WEIGHT 2.266667 7.466667 5.866667 11.066667 4.266667 13.866667
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SAS 20:44 FRIDAY, NOVEMBER 4, 1988 7

OBS NI N2 N3 N4 N5 N6

1 20 0 10 5 0 5
2 0 15 5 2 0 8
3 10 5 27 6 0 6
4 5 2 6 18 3 2
5 0 0 0 3 5 2
6 5 8 6 2 2 23
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SAS 20:44 FRIDAY, NOVEMBER 4, 1988 8

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

PRIOR COMMUNALITY ESTIMATES: ONE

EIGENVALUES OF THE COVARIANCE MATRIX: TOTAL = 281.6 AVERAGE = 46.9333

1 2 3 4 5 6
EIGENVALUE 115.735 86.030914 42.193668 24.161913 13.478646 0.000000
DIFFERENCE 29.703945 43.837245 18.031756 10.683267 13.478646
PROPORTION 0.4110 0.3055 0.1498 0.0858 0.0479 0.0000
CUMULATIVE 0.4110 0.7165 0.8663 0.9521 1.0000 1.0000

* 3 FACTORS WILL BE RETAINED BY THE NFACTOR CRITERION

FACTOR PATTERN

FACTOR1 FACTOR2 FACTOR3

* Ni 0.78273 0.03569 -0.58222
N2 -0.39169 0.64646 0.46963
N3 0.86629 0.36788 0.32042
N4 0.27951 -0.62986 0.19649
N5 -0.53188 -0.55696 -0.06460
N6 -0.30376 0.84262 -0.28671

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1 FACTOR2 FACTOR3
WEIGHTED 115.735 86.030914 42.193668
UNWEIGHTED 1.969839 1.971451 0.787178

FINAL COMMUNALITY ESTIM4ATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED 243.959 UNWEIGHTED = 4.728468

Ni N2 N3 N4 N5 N6
COMMUNALITY 0.952913 0.791884 0.988469 0.513453 0.597271 0.884477
WEIGHT 56.666667 33.600000 88.000000 37.200000 4.266667 61.866667

69



SAS 20:44 FRIDAY, NOVEMBER 4, 1988 9

ROTATION METHOD: VARIMAX

ORTHOGONAL TRANSFORMATION MATRIX

1 2 3

1 0.79508 -0.33867 0.50314
2 0.49894 0.83689 -0.22511
3 0.34484 -0.43002 -0.83437

ROTATED FACTOR PATTERN

FACTORI FACTOR2 FACTOR3

NI 0.43937 0.01515 0.87157
N2 0.17307 0.47172 -0.73445
N3 0.98281 -0.12330 0.08570
N4 -0.02427 -0.70628 0.11848
N5 -0.72305 -0.25820 -0.08834
N6 0.08004 0.93134 -0.10330

VARIANCE EXPLAINED BY EACH FACTOR

FACTORI FACTOR2 FACTOR3
WEIGHTED 99.595452 81.331629 63.032361
UNWEIGHTED 1.718714 1.670849 1.338905

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 243.959 UNWEIGHTED = 4.728468

Ni N2 N3 N4 N5 N6
COMMUNALITY 0.952913 0.791884 0.988469 0.513453 0.597271 0.884477
WEIGHT 56.666667 33.600000 88.000000 37.200000 4.266667 61.866667
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Appendix F. Manufacturing Example Transition Specification

* (operation completed for part i on machine j)
WHEN ALARM(opcom[i,j]);

currop[i,j] done;
opncompli] opncompli] + 1;

ipart i to off-shuttle position k of machine j)
* WHEN currop[i,j] = done & off_shu~pos[j,kI 0;

SET ALARM(mov-offshu~i,j,k], mach-off-time);
mach-time busylj] :== mach-time_busy[jI + (system-time -mach_

start -time);
SET ALAR!(next-op[i], 0);

* {Ipart i irn off-shuttle position k of machine j)
WHEN ALARM(mov offshu i ,j ,k]);

off -shu-pos[j,k] :== i
mach-status[j) :== idle;
SET ALARM(nextprt[j], 0);

* (operations completed for part i}
WHEN ALARM(nextop[i] = tot opn[part type~i]] &

opncomp[iI = tot opn[part typell);
part time systi] :== part_time_sysil + (system_time - part_

start time! i]);
DESTRQY(part type, i);

* CREATE (part type, i);
SET ALARM(next-optll, 0);

(next operation for part i}
WHEN ALARM(nextop[i] < tot opnlpart type[i]I & opncomp[iI <

tot opnf part~typel i);
*next opnlli] :=olookup(i, opnscomp[i]);

SET ALARM(next_stt[i,nextopn[i]], 0);

(next station for next operation for part il
WHEN ALARM(next-sttli,nextopnlil]);

next -statli] :=slookup(i, next-opn[i]);
* SET ALARM(find-cart[i], 0);

{find cart for part i}
WHEN ALARM(findcart[iI idle & cart_statiji = idle);

cart -assign[i] j
SET ALARM(movcart[j,i,1], 0);

(move cart j to pickup part i)
WHEN ALARM(mov-cartljjijlI);

cmov -tieIj,i,1] = mtime-calcj,i];
SET ALARM(cart-arrlj,i,lI, cmov-time[j,i,lD);
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{cart j arrives to pickup part i}
WHEN ALARM((cart_arr[j,i,lI) & off shupos[currstat[ii,II =)

* SET ALARM(to-cart[j,iI, off_cart_time);

(part i arrives onto cart j}
WHEN ALARM(to-cart[j,i]);

cart_st4[jI = busy;
****For all off-shu positions n;

* offshu~pos[n-l] :== off_shupos[nI;
SET ALARM(mov-cartfj,i,2], 0);

(cart j arrives to drop off part i at machine kQ
WHEN ALARM((cart-arrlj,i,2]) & onshupos[nextstat[i],k] = 0);

SET ALARM(to-onshu[j,i,next_stat[i],k], cart_onshu_mvtim
* [next-statil);

(part i arrives into on-shuttlej
WHEN ALARN(to-onshu[j,i,next_stat[i],kI);

onshuposnextstatil,k] :=i
cart-stat[j] :=idle;

* SET ALARM(chk-machstat[next_stattlib i], 0);
curr-stat[iI :== next-stat[iI;

{part i can move into machine I
WHEN ALARM((chkmach_stat[j,i]) & on_shu_pos[j,l] i & mach_statijl
idle;

* SET ALARM(shu-machlj,i], shu_mach time);

(part i moves into machine)
WHEN ALARM(shu-mach[j,i]);

For on-shu positions 2 to n;
onshujpos[j,n-1] :== onshupos[j,n];

* For last on-shu position n;
on-shu-pos[j,n] :== 0;
mach_statiji = busy;
mach-start-time :=systemtime;
SET ALARM(opcom[i,j], 0);

* (next part from queue selected to move into machine)
WHEN ALARM((next-prt[j]) & on_shuwpos[j,1I = i & i = 0);

SET ALARM(shu-machlj,i], shu_mach time);
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Appendix G. Manufacturing Example Diagnostics

NODE.CMP

NODE 1 operation completed for part i on machine j

CONTROL ATTRIBUTE op-com[i,j]
OUTPUT ATTRIBUTE currop[i,j]
INPUT ATTRIBUTE opncomp[i]

OUTPUT ATTRIBUTE opncomp[i]

NODE 2 part i to off-shuttle position k of machine j

CONTROL ATTRIBUTE currop[i,j]
CONTROL ATTRIBUTE offshu-pos[j,k]
OUTPUT ATTRIBUTE movoffshu[i,j~k]
INPUT ATTRIBUTE machofftime
INPUT ATTRIBUTE machtime_busy[j]
INPUT ATTRIBUTE mach start time

OUTPUT ATTRIBUTE machtimebusy[j]
OUTPUT ATTRIBUTE next-op[i]

NODE 3 part i in off-shuttle position k of machine j

CONTROL ATTRIBUTE movoffshu[i-j,k]
INPUT ATTRIBUTE i

OUTPUT ATTRIBUTE offshu_posj,k]
OUTPUT ATTRIBUTE mach status[j]
OUTPUT ATTRIBUTE next-prt[j]

NODE 4 operations completed for part i

CONTROL ATTRIBUTE nextop[i]
INPUT ATTRIBUTE tot_opn[parttypeil]]

CONTROL ATTRIBUTE opncomptil
* INPUT ATTRIBUTE tot_opn[parttypei]I

INPUT ATTRIBUTE part-time-sys[il
INPUT ATTRIBUTE partstarttime[iI

OUTPUT ATTRIBUTE part-time-sysli]
INPUT ATTRIBUTE parttype

OUTPUT ATTRIBUTE parttype
* OUTPUT ATTRIBUTE nextopi]

NODE 5 next operation for part i

CONTROL ATTRIBUTE nextop[i]
* INPUT ATTRIBUTE tot_opnfparttype[i]]

CONTROL ATTRIBUTE opncomp[i]
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INPUT ATTRIBUTE totopn[part-typetill
INPUT ATTRIBUTE i
INPUT ATTRIBUTE opncomp[i]

OUTPUT ATTRIBUTE nextopn[i]
OUTPUT ATTRIBUTE next-stt[i,next-opn[i]]

NODE 6 next station for next operation for part i

CONTROL ATTRIBUTE nextstt[i,nextopn[i]]
INPUT ATTRIBUTE i
INPUT ATTRIBUTE next_opn[i]

OUTPUT ATTRIBUTE nextstat[i]
OUTPUT ATTRIBUTE findcart[i]

NODE 7 find cart for part i

CONTROL ATTRIBUTE findcart[i]
CONTROL ATTRIBUTE cartstat[j]

INPUT ATTRIBUTE j
OUTPUT ATTRIBUTE cartassign[i]
OUTPUT ATTRIBUTE mov_cart[j,i,1]

NODE 8 move cart j to pickup part i

CONTROL ATTRIBUTE movcart[j,i,l]
INPUT ATTRIBUTE mtimecalc[j,i]

OUTPUT ATTRIBUTE cmovtime[j,i,1]
OUTPUT ATTRIBUTE cartarr[j,i,1]
INPUT ATTRIBUTE cmovtime[j,i,1]

NODE 9 cart j arrives to pickup part i

CONTROL ATTRIBUTE cartarr[j,i,1]
CONTROL ATTRIBUTE offshu pos[curr_stat[i],l]

INPUT ATTRIBUTE i
OUTPUT ATTRIBUTE to_cart[j,i]
INPUT ATTRIBUTE offcarttime

NODE 10 part i arrives onto cart j

CONTROL ATTRIBUTE to_cart[j,il
OUTPUT ATTRIBUTE cartstat[j]
INPUT ATTRIBUTE offshu pos[n]

OUTPUT XTTRIBUTE offshu pos[n-1]
OUTPUT ATTRIBUTE movcart[j,i,2]
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NODE 11 cart j arrives to drop off part i at machine k

CONTROL ATTRIBUTE cart arr[j,i,2]
CONTROL ATTRIBUTE onshu pos[nextstat[i],k]
OUTPUT ATTRIBUTE toonshujj,i,nextstat[i],k]
INPUT ATTRIBUTE cartonshu mvtii [nextstat[i])

NODE 12 part i arrives into on-shuttle

CONTROL ATTRIBUTE toonshu[j,i,nextstat[i],k]
INPUT ATTRIBUTE i

OUTPUT ATTRIBUTE onshu pos[nextstat[i],k]
OUTPUT ATTRIBUTE cart stat[j]
OUTPUT ATTRIBUTE chkmachstat[nextstat[i],i]
INPUT ATTRIBUTE next stat[i]

OUTPUT ATTRIBUTE curr-stat[i)

NODE 13 part i can move into machine

CONTROL ATTRIBUTE chk machstat[j,i]
CONTROL ATTRIBUTE onshu-pos[j,1]

INPUT ATTRIBUTE i
CONTROL ATTRIBUTE mach stat[j]
OUTPUT ATTRIBUTE shumach[j,i]
INPUT ATTRIBUTE shu-machtime

NODE 14 part i moves into machine

CONTROL ATTRIBUTE shu mach[j,i]
INPUT ATTRIBUTE on_shu-pos[j,n]

OUTPUT ATTRIBUTE onshu pos[j,n-1]
OUTPUT ATTRIBUTE onshupos[j,n]
OUTPUT ATTRIBUTE mach-stat[j]
OUTPUT ATTRIBUTE mach start time
OUTPUT ATTRIBUTE op-com[i,j]

NODE 15 next part from queue selected to move into machine

CONTROL ATTRIBUTE next prt[j]
CONTROL ATTRIBUTE onshu-pos[j,1]

* INPUT ATTRIBUTE i
CONTROL ATTRIBUTE i
OUTPUT ATTRIBUTE shu_nach[j,il
INPUT ATTRIBUTE shumachtime
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ERRORS.DAT

NON-MATCHING SUBSCRIPTS

NODE ATTRIBUTE NODE ATTRIBUTE

FATAL ERROR!!! Subscripts are not compatible! Results will be
inaccurate!!!
2 offshu-pos[j,k] 10 off_shuposn-1]

Warning: Subscripts do not match exactly
3 off_shupos[j,k] 9 off_shupos[curr_statfi],l]

FATAL ERROR!!! Subscripts are not compatible! Results will be
inaccurate!!!
3 off_shupos[j,k] 10 off_shupos[n]

Warning: Subscripts do not match exactly
8 mov_cart[j,i,l] 10 mov_cart[j,i,2]

*** The above edge has been disregarded ***

Warning: Subscripts do not match exactly
8 cart_arr[j,i,l] 11 cartarr[j,i,2]

*** The above edge has been disregarded ***

FATAL ERROR!!! Subscripts are not compatible! Results will be
inaccurate!!!
9 off_shupos[curr_stat[i],l] 10 off_shupos[n-1]

Warning: Subscripts do not match exactly
11 on_shuposnextstat[i],k] 14 on_shupos[j,n-1]

Warning: Subscripts do not match exactly
12 on_shupos[nextstat[i,k] 13 on_shupos[j,l]

Warning: Subscripts do not match exactly
12 on_shupos[nextstat[i],k] 14 on_shu pos[j,n]

Warning: Subscripts do not match exactly
12 on_shupos[nextstat[i],k] 15 on_shupos[j,1

Warning: Subscripts du not match exactly
12 chkmachstat[nextstat[i],i] 13 chkmachstat[j,i]

Warning: Subscripts do not match exactly
13 on_shupos[j,1] 14 on_shupos[j,n-1]

Warning: Subscripts do not match exactly
14 on-shu-pos[j,n-1] 15 on_shupos(j,1]
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ATTRIBUTES WITHOUT A COUNTERPART

ATTRIBUTE NODE TYPE

machofftime 2 INPUT
machtimebusy 2 INPUT
machtime_busy 2 OUTPUT
i 3 INPUT
machstatus 3 OUTPUT
tot opn 4 INPUT
part-timesys 4 INPUT
part starttime 4 INPUT
parttime_sys 4 OUTPUT
tot-opn 5 INPUT
i 5 INPUT
i 6 INPUT
J 7 INPUT
cartassign 7 OUTPUT
mtimecalc 8 INPUT
cmovtime 8 INPUT
cmovtime 8 OUTPUT
i 9 INPUT
offcart time 9 INPUT
cartonshumvtim 11 INPUT

12 INPUT
i 13 INPUT
shumachtime 13 INPUT
i 15 CONTROL
shumachtime 15 INPUT

INF.DAT

ATTRIBUTE NODE C/I/O NODE C/I/O W2 W3
op-com , 1 1 14 3 1 57
currop , 1 3 2 1 1 57
opn-comp , 1 3 4 1 1 19
opncomp , 1 3 5 1 1 19
off shupos , 2 1 3 3 1 3
mach-start-time , 2 2 14 3 1 1
mov-offshu , 2 3 3 1 2 60
next op , 2 3 4 1 1 19
next-op , 2 3 5 1 1 19
off-shupos , 3 3 9 1 1 19
next-prt , 3 3 15 1 1 3
part type , 4 3 5 2 1 1
next op , 4 3 5 1 2 20
next opn , 5 3 6 2 1 19
nextestt , 5 3 6 1 2 380
next-stat 6 3 11 2 1 1
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next stat 6 3 12 2 1 19
find cart 6 3 7 1 1 19

* cart stat 7 1 10 3 1 3
cart-stat 7 1 12 3 1 3
mov-cart 7 3 8 1 1 57
cart-arr 8 3 9 1 1 57
currastat 9 2 12 3 1 1
to cart 9 3 10 1 1 57
on shupos 11 1 12 3 1 19
on-shupos 11 1 14 3 1 19
next-stat 11 2 12 3 2 20
to onshu 11 3 12 1 3 1103
nextstat 11 3 12 2 4 1122
on shupos 12 3 13 1 1 3
on shupos 12 3 14 2 1 15
on shupos 12 3 15 1 1 3
chk machstat 12 3 13 1 2 60
on-shupos 13 1 14 3 1 3
mach stat 13 1 14 3 2 6
shu-mach 13 3 14 1 3 63
shuumach 14 1 15 3 1 57
on-shupos 14 3 15 1 2 60

NUMBER OF EDGES = 38
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Appeni-ix H. Manufacturing Example SAS Input File

* OPTIONS LINESIZE:80;

* E x E';

DATA CONDSPEC;
INPUT NI N2 N3 N4 N5 N6 N7 N8 N9 N1O Nil N12 N13 N14 NI5

* CARDS;
4 1 0 1 1 0 0 0 0 0 0 0 0 1 0
1 5 1 1 1 0 0 0 0 0 0 0 0 1 0
0 1 3 0 0 0 0 0 1 0 0 0 0 0 1
1 1 0 3 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 4 1 0 0 0 0 0 0 0 0 0

* 0 0 0 0 1 4 1 0 0 0 1 1 0 0 0
0 0 0 0 0 1 4 1 0 1 0 1 0 0 0
0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 4 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1 2 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 3 1 0 1 0
0 0 0 0 0 1 1 0 1 0 1 7 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 2 1 0
1 1 0 0 0 0 0 0 0 0 1 1 1 6 1
0 0 1 0 0 0 0 0 0 0 0 1 0 1 3

PROC PRINT;
* PROC FACTOR COV NFACTORS = 6 ROTATE=VARIMAX

VAR Ni N2 N3 N4 N5 N6 N7 N8 N9 NI0 Nl N12
N13 N14 N15

* E x W2 x E';

* DATA CONDSPEC;
INPUT Ni N2 N3 N4 N5 N6 N7 N8 N9 N1O Nll N12 N13 N14 N15
CARDS;

4 1 0 1 1 0 0 0 0 0 0 0 0 1 0
1 6 2 1 1 0 0 0 0 0 0 0 0 1 0
0 2 4 0 0 0 0 0 1 0 0 0 0 0 1

* 1 1 0 4 2 0 0 0 0 0 0 0 0 0 0
1 1 0 2 6 2 0 0 0 0 0 0 0 0 0
0 0 0 0 2 5 1 0 0 0 1 1 0 0 0
0 0 0 0 0 1 4 1 0 1 0 1 0 0 0
0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 4 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1 2 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 6 4 0 1 0
0 0 0 0 0 1 1 0 1 0 4 II 2 1 1
0 0 0 0 0 0 0 0 0 0 0 2 5 3 0
1 1 0 0 0 0 0 0 0 0 1 1 3 9 2
0 0 1 0 0 0 0 0 0 0 0 1 0 2 4

PROC PRINT;
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PROC FACTOR COV NFACTORS = 6 ROTATE=VARIMAX
VAR Ni N2 N3 N4 N5 N6 N7 N8 N9 N1O Nil N12

N13 N14 N15

* E x W3 x E';

DATA CONDSPEC;
INPUT NI N2 N3 N4 N5 N6 N7 N8 N9 N10 Nll N12 N13 N14 N15
CARDS;

152 57 0 19 19 0 0 0 0 0 0 0 0 57 0
57 156 60 19 19 0 0 0 0 0 0 0 0 1 0
0 60 82 0 0 0 0 0 19 0 0 0 0 0 3

19 19 0 58 20 0 0 0 0 0 0 0 0 0 0
19 19 0 20 438 380 0 0 0 0 0 0 0 0 0
0 0 0 0 380 419 19 0 0 0 1 19 0 0 0
0 0 0 0 0 19 82 57 0 3 0 3 0 0 0
0 0 0 0 0 0 57 114 57 0 0 0 0 0 0
0 0 19 0 0 0 0 57 134 57 0 1 0 0 0
0 0 0 0 0 0 3 0 57 60 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1142 1122 0 19 0
0 0 0 0 0 19 3 0 1 0 1122 1223 60 15 3
0 0 0 0 0 0 0 0 0 0 0 60 123 63 0

57 1 0 0 0 0 0 0 0 0 19 15 63 215 60
0 0 3 0 0 0 0 0 0 0 0 3 0 60 66

PROC PRINT;
PROC FACTOR COV NFACTORS = 7 ROTATE=VARIMAX

VAR Ni N2 N3 N4 N5 N6 N7 N8 N9 NIO NIl N12
N13 NI4 NI5
i = 19;
j = 3;

k = 1;
n 5;

*n-I = 4
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Appendix I. Manufacturing Example SAS Output File

SAS 10:25 THURSDAY, NOVEMBER 17, 1988 1

OBS Ni N2 N3 N4 N5 N6 N7 N8 N9 N1O NIl N12 N13 N14 N15

1 4 1 0 1 1 0 0 0 0 0 0 0 0 1 0
2 1 5 1 1 1 0 0 0 0 0 0 0 0 1 0
3 0 1 3 0 0 0 0 0 1 0 0 0 0 0 1
4 1 1 0 3 1 0 0 0 0 0 0 0 0 0 0
5 1 1 0 1 4 1 0 0 0 0 0 0 0 0 0
6 0 0 0 0 1 4 1 0 0 0 1 1 0 0 0
7 0 0 0 0 0 1 4 1 0 1 0 1 0 0 0
8 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
9 0 0 1 0 0 0 0 1 4 1 0 1 0 0 0
10 0 0 0 0 0 0 1 0 1 2 0 0 0 0 0
11 0 0 0 0 0 1 0 0 0 0 3 1 0 1 0
12 0 0 0 0 0 1 1 0 1 0 1 7 1 1 1
13 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0
14 1 1 0 0 0 0 0 0 0 0 1 1 1 6 1
15 0 0 1 0 0 0 0 0 0 0 0 1 0 1 3
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SAS 10:25 THURSDAY, NOVEMBER 17, 1988 2

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

PRIOR COMMUNALITY ESTIMATES: ONE

EIGENVALUES OF THE COVARIANCE MATRIX
TOTAL 16.4667 AVERAGE = 1.09778

1 2 3 4 5
EIGENVALUE 4.323441 3.234584 2.129941 1.628266 1.115005
DIFFERENCE 1.088857 1.104643 0.501675 0.513261 0.050260
PROPORTION 0.2626 0.1964 0.1293 0.0989 0.0677
CUMULATIVE 0.2626 0.4590 0.5883 0.6872 0.7549

6 7 8 9 10
EIGENVALUE 1.064745 0.831503 0.571358 0.515635 0.322260
DIFFERENCE 0.233242 0.260145 0.055723 0.193376 0.036545
PROPORTION 0.0647 0.0505 0.0347 0.0313 0.0196
CUMULATIVE 0.8196 0.8701 0.9048 0.9361 0.9557

11 12 13 14 15
EIGENVALUE 0.285714 0.254303 0.169131 0.020781 0.000000
DIFFERENCE 0.031412 0.085172 0.148350 0.020781
PROPORTION 0.0174 0.0154 0.0103 0.0013 0.0000
CUMULATIVE 0.9730 0.9885 0.9987 1.0000 1.0000

6 FACTORS WILL BE RETAINED BY THE NFACTOR CRITERION

FACTOR PATTERN

FACTOR1 FACTOR2 FACTOR3 FACTOR4 FACTOR5 FACTOR6

Ni -0.52781 0.38475 0.25344 0.08427 0.42059 -0.28469
N2 -0.59838 0.36968 0.07619 0.42346 0.00595 0.50793
N3 -0.18124 -0.09971 -0.54514 0.41027 -0.47303 0.25012
N4 -0.57871 0.07059 0.34237 0.30099 0.22851 -0.16163
N5 -0.50586 -0.03318 0.62535 0.19318 -0.07910 -0.22910
N6 0.29372 -0.24227 0.68342 -0.22922 -0.38791 0.07974
N7 0.34781 -0.44891 0.19375 -0.35889 0.42055 0.52575
N8 0.08814 -0.48495 -0.31566 -0.19450 0.35990 0.07980
N9 0.23090 -0.39245 -0.56946 0.34217 0.11025 -0.27821
N1O 0.08814 -0.48495 -0.31566 -0.19450 0.35990 0.07980
Nll 0.40944 0.28020 0.25879 -0.27003 -0.38629 -0.10703
N12 0.86746 0.19397 0.21169 0.38859 0.11340 0.01424
N13 0.41611 0.46137 -0.05335 -0.03141 0.13250 -0.09578
N14 0.12105 0.90072 -0.17072 -0.30581 0.05523 0.01553
N15 0.29091 0.33273 -0.32154 0.12107 -0.36642 0.05847
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SAS 10:25 THURSDAY, NOVEMBER 17, 1988 3

VARIANCE EXPLAINED BY EACH FACTOR

FACTORI FACTOR2 FACTOR3 FACTOR4 FACTOR5 FACTOR6
WEIGHTED 4.323441 3.234584 2.129941 1.628266 1.115005 1.064745
UNWEIGHTED 2.728954 2.436301 2.150841 1.189819 1.374657 0.877623

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

FINAL COMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 13.495981 UNWEIGHTED = 10.758195

Ni N2 N3 N4 N5
COMMUNALITY 0.755891 0.937880 0.794609 0.626049 0.744124
WEIGHT 1.123810 1.666667 0.685714 0.685714 1.123810

N6 N7 N8 N9 N1O
COMMUNALITY 0.821404 0.942115 0.516310 0.738249 0.516310
WEIGHT 1.123810 1.123810 0.352381 1.123810 0.352381

Nll N12 N13 N14 N15
COMMUNALITY 0.546707 0.998992 0.416572 0.951917 0.451065
WEIGHT 0.685714 3.066667 0.352381 2.314286 0.685714

ROTATION METHOD: VARIMAX

ORTHOGONAL TRANSFORMATION MATRIX

1 2 3 4 5 6

1 -0.47627 0.18182 0.14979 0.16450 -0.39327 0.73209
2 0.10481 -0.46684 0.06642 0.81930 0.27757 0.13555
3 0.53898 -0.05628 0.75994 -0.22185 0.03827 0.27954
4 0.08322 -0.38974 -0.43607 -0.42593 0.40450 0.55316
5 0.57220 0.63211 -0.37395 0.26625 0.02961 0.24785
6 -0.37060 0.44089 0.25622 0.01311 0.77610 0.01094
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SAS 10:25 THURSDAY, NOVEMBER 17, 1988 4

ROTATED FACTOR PATTERN

FACTORI FACTOR2 FACTOR3 FACTOR4 FACTOR5 FACTOR6

Ni 0.78149 -0.18235 -0.12787 0.24453 0.14965 -0.11566
N2 0.21521 -0.22300 -0.06393 0.01542 0.90653 -0.12538
N3 -0.54718 -0.30435 -0.38598 -0.28798 0.36880 -0.18615
N4 0.68326 -0.20157 -0.07993 -0.18280 0.26336 -0.09703
N5 0.63022 -0.33798 0.28390 -0.35548 0.11166 -0.11528
N6 -0.06752 0.00733 0.81271 -0.30639 -0.19892 0.15117
N7 -0.09235 0.89941 0.30347 -0.08182 0.02134 0.15940
N8 -0.10277 0.59867 -0.28821 -0.13307 -0.18744 -0.10696
N9 -0.26337 0 .7091 -0.68596 -0.27725 -0.29578 0.17021
N10 -0.10277 0.59867 -0.28821 -0.13307 -0.18744 -0.10696
Nli -0.22999 -0.25705 0.51139 0.25026 -0.27706 0.16379
N12 -0.18677 -0.01823 0.09548 0.11953 -0.10761 0.96374
N13 -0.06988 -0.08296 -0.00796 0.50568 -0.12074 0.36667
N14 -0.05487 -0.22793 0.06490 0.94091 0.08586 0.00769
N15 -0.49824 -0.33736 -0.07947 0.24343 0.04915 0.14498

VARIANCE EXPLAINED BY EACH FACTOR

FACTORI FACTOR2 FACTOR3 FACTOR4 FACTOR5 FACTOR6
WEIGHTED 2.157557 1.754417 1.876781 2.767642 1.829716 3.109869
UNWEIGHTED 2.267939 2.100347 1.926875 1.792805 1.372511 1.297717

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 13.495981 UNWEIGHTED = 10.758195

Ni N2 N3 N4 N5
COMMUNALITY 0.755891 0.937880 0.794609 0.626049 0.744124
WEIGHT 1.123810 1.666667 0.685714 0.685714 1.123810

N6 N7 N8 N9 NIO
COMMUNALITY 0.821404 0.942115 0.516310 0.738249 0.516310
WEIGHT 1.123810 1.123810 0.352381 1.123810 0.352381

Nll N12 N13 N14 N15
COMMUNALITY 0.546707 0.998992 0.416572 0.951917 0.451065
WEIGHT 0.685714 3.066667 0.352381 2.314286 0.685714
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SAS 10:25 THURSDAY, NOVEMBER 17, 1988 5

* OBS NI N2 N3 N4 N5 N6 N7 N8 N9 NIO Nil N12 N13 N14 Ni5

1 4 1 0 1 1 0 0 0 0 0 0 0 0 1 0
2 1 6 2 1 1 0 0 0 0 0 0 0 0 1 0
3 0 2 4 0 0 0 0 0 1 0 0 0 0 0 1
4 1 1 0 4 2 0 0 0 0 0 0 0 0 0 0

* 5 1 1 0 2 6 2 0 0 0 0 0 0 0 0 0
6 0 0 0 0 2 5 1 0 0 0 1 1 0 0 0
7 0 0 0 0 0 1 4 1 0 1 0 1 0 0 0
8 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
9 0 0 1 0 0 0 0 1 4 1 0 1 0 0 0

10 0 0 0 0 0 0 1 0 1 2 0 0 0 0 0
* 11 0 0 0 0 0 1 0 0 0 0 6 4 0 1 0

12 0 0 0 0 0 1 1 0 1 0 4 11 2 1 1
13 0 0 0 0 0 0 0 0 0 0 0 2 5 3 0
14 1 1 0 0 0 0 0 0 0 0 1 1 3 9 2
15 0 0 1 0 0 0 0 0 0 0 0 1 0 2 4

0
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SAS 10:25 THURSDAY, NOVEMBER 17, 1988 6

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

PRIOR COMMUNALITY ESTIMATES: ONE

EIGENVALUES OF THE COVARIANCE MATRIX
TOTAL = 33.7333 AVERAGE 2.24889

1 2 3 4 5
EIGENVALUE 11.492141 7.199870 3.877136 3.104295 1.784399
DIFFERENCE 4.292272 3.322734 0.772841 1.319896 0.284862
PROPORTION 0.3407 0.2134 0.1149 0.0920 0.0529
CU!ULATIVE 0.3407 0.5541 0.6690 0.7611 0.8140

6 7 8 9 10
EIGENVALUE 1.499537 1.367259 1.121034 0.768699 0.639928
DIFFERENCE 0.132278 0.246224 0.352335 0.128771 0.324170
PROPORTION 0.0445 0.0405 0.0332 0.0228 0.0190
CUMULATIVE 0.8584 0.8990 0.9322 0.9550 0.9739

11 12 13 14 15
EIGENVALUE 0.315758 0.285714 0.249753 0.027811 0.000000
DIFFERENCE 0.030044 0.035961 0.221941 0.027811
PROPORTION 0.0094 0.0085 0.0074 0.0008 0.0000
CUMULATIVE 0.9833 0.9918 0.9992 1.0000 1.0000

6 FACTORS WILL BE RETAINED BY THE NFACTOR CRITERION

FACTOR PATTERN

FACTOR1 FACTOR2 FACTOR3 FACTOR4 FACTOR5 FACTOR6

Ni -0.30178 0.19888 0.41712 0.17228 -0.25038 -0.42386
N2 -0.37059 0.17186 0.20439 0.79669 0.06801 0.21580
N3 -0.28584 0.03628 -0.34932 0.68119 0.24160 0.31144
N4 -0.40986 -0.14151 0.57622 0.16384 -0.39802 -0.25059
N5 -0.38940 -0.27218 0.79694 -0.10337 -0.07484 0.12952
N6 0.07775 -0.43033 0.46265 -0.39817 0.45974 0.36724
N7 0.07306 -0.32088 -0.29345 -0.42509 0.07547 0.23276
N8 -0.15844 -0.19421 -0.52256 -0.29545 -0.12322 -0.05273
N9 0.02531 -0.22474 -0.58020 0.04721 -0.25229 -0.00426
N10 -0.15844 -0.19421 -0.52256 -0.29545 -0.12322 -0.05273
NIl 0.79085 -0.23104 0.17755 0.13158 0.31046 -0.32735
N12 0.94480 -0.22765 0.06261 0.13461 -0.11978 0.07836
N13 0.48696 0.60981 0.08549 -0.16722 -0.37876 0.32421
N14 0.29763 0.92097 0.15021 -0.08182 0.10387 -0.02992
N15 0.21226 0.46834 -0.14424 0.07229 0.33262 0.01790
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SAS 10:25 THURSDAY, NOVEMBER 17, 1988 7

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1 FACTOR2 FACTOR3 FACTOR4 FACTOR5 FACTOR6
WEIGHTED 11.492141 7.199870 3.877136 3.104295 1.784399 1.499537
UNWEIGHTED 2.580833 2.123196 2.573990 1.757311 0.976396 0.817046

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 28.957376 UNWEIGHTED = 10.828772

Ni N2 N3 N4 N5
COMMUNALITY 0.576644 0.894549 0 824425 0.768100 0.893895
WEIGHT 1.123810 2.457143 1.266667 1.266667 2.600000

N6 N7 N8 N9 N10
COMMUNALITY 0.910053 0.434985 0.441152 0.453684 0.441152
WEIGHT 1.809524 1.123810 0.352381 1.123810 0.352381

Nil N12 N13 N14 NI5
COMMUNALITY 0.931208 0.986998 0.892841 0.977709 0.401379
WEIGHT 3.171429 8.123810 2.238095 5.457143 1.266667

ROTATION METHOD: VARIMAX

ORTHOGONAL TRANSFORMATION MATRIX

1 2 3 4 5 6

1 -0.00018 0.85938 0.24732 -0.18651 -0.20622 0.35070
2 -0.14255 -0.32604 0.71657 0.34453 0.02347 0.49056
3 -0.87804 0.08066 -0.33137 0.28149 -0.15802 0.09236
4 0.00024 0.32637 -0.01676 0.39293 0.85622 -0.07547
5 -0.41042 0.03906 0.53819 -0.38946 0.12057 -0.61169
6 -0.20070 -0.20156 -0.16008 -0.67912 0.42930 0.49796
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SAS 10:25 THURSDAY, NOVEMBER 17, 1988 8

ROTATED FACTOR PATTERN

FACTOR1 FACTOR2 FACTOR3 FACTOR4 FACTOR5 FACTOR6

Ni -0.20667 -0.15866 -0.14013 0.69528 -0.06365 -0.04066
N2 -0.27493 -0.13885 -0.04752 0.32586 0.83114 -0.02105
N3 0.14010 -0.11666 0.13981 -0.07045 0.86108 -0.15882
N4 -0.27201 -0.17118 -0.57055 0.57946 -0.02514 -0.05362
N5 -0.65618 -0.24439 -0.61470 0.10375 -0.09395 -0.07841
N6 -0.60739 0.05842 -0.24713 -0.61744 -0.22708 -0.20941
N7 0.22560 -0.03896 -0.10414 -0.56127 -0.23117 -0.05707
N8 0.54763 -0.20560 -0.05812 -0.21674 -0.17977 -0.12769
N9 0.64589 0.05464 -0.09841 -0.12577 0.08937 -0.00632
N1O 0.54763 -0.20560 -0.05812 -0.21674 -0.17977 -0.12769
Nil -0.18479 0.89034 0.18848 -0.02403 -0.18701 -0.18243
N12 0.01077 0.91467 -0.02947 -0.19070 -0.07562 0.32759
N13 -0.07174 0.09184 0.27614 0.00496 -0.14928 0.88357
N14 -0.29988 -0.04899 0.74584 0.25179 -0.13387 0.49778
N15 -0.08024 0.05106 0.61082 -0.03213 0.09970 0.09086

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1 FACTOR2 FACTOR3 FACTOR4 FACTOR5 FACTOR6
WEIGHTED 3.496379 9.672114 5.381773 3.003144 3.167626 4.236341
UNWEIGHTED 2.215042 1.882314 1.875214 1.848540 1.714230 1.293432

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 28.957376 UNWEIGHTED 10.828772

Ni N2 N3 N4 N5
COMMUNALITY 0.576644 0.894549 0.824425 0.768100 0.893895
WEIGHT 1.123810 2.457143 1.266667 1.266667 2.600000

N6 N7 N8 N9 N1O
COMMUNALITY 0.910053 0.434985 0.441152 0.453684 0.441152
WEIGHT 1.809524 1.123810 0.352381 1.123810 0.352381

Nil N12 N13 N14 N15
COMMUNALITY 0.931208 0.986998 0.892841 0.977709 0.401379
WEIGHT 3.171429 8.123810 2.238095 5.457143 1.266667
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SAS 10:25 THURSDAY, NOVEMBER 17, 1988 9

OBS Ni N2 N3 N4 N5 N6 N7 N8 N9 N10 Nll N12 N13 N14 NI5

1 152 57 0 19 19 0 0 0 0 0 0 0 0 57 0
2 57 156 60 19 19 0 0 0 0 0 0 0 0 1 0
3 0 60 82 0 0 0 0 0 19 0 0 0 0 0 3
4 19 19 0 58 20 0 0 0 0 0 0 0 0 0 0
5 19 19 0 20 438 380 0 0 0 0 0 0 0 0 0
6 0 0 0 0 380 419 19 0 0 0 1 19 0 0 0
7 0 0 0 0 0 19 82 57 0 3 0 3 0 0 0
8 0 0 0 0 0 0 57 114 57 0 0 0 0 0 0
9 0 0 19 0 0 0 0 57 134 57 0 1 0 0 0

10 0 0 0 0 0 0 3 0 57 60 0 0 0 0 0
11 0 0 0 0 0 1 0 0 0 0 1142 1122 0 19 0
12 0 0 0 0 0 19 3 0 1 0 1122 1223 60 15 3
13 0 0 0 0 0 0 0 0 0 0 0 60 123 63 0
14 57 1 00 0 0 0 0 0 0 19 15 63 215 60
15 0 0 3 0 0 0 0 0 0 0 0 3 0 60 66

89



SAS 10:25 THURSDAY, NOVEMBER 17, 1988 10

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

PRIOR COMMUNALITY ESTIMATES: ONE

EIGENVALUES OF THE COVARIANCE MATRIX
TOTAL : 379931 AVERAGE 25328.7

1 2 3 4 5
EIGENVALUE 327830 39240.1 4653.97 3251.5 1389.33
DIFFERENCE 288589 34586.1 1402.47 1862.17 203.735
PROPORTION 0.8629 0.1033 0.0122 0.0086 0.0037
CLTMULATIVE 0.8629 0.9661 0.9784 0.9870 0.9906

6 7 8 9 10
EIGENVALUE 1185.59 888.862 744.777 289.529 173.706
DIFFERENCE 296.733 144.085 455.249 115.822 41.763777
PROPORTION 0.0031 0.0023 0.0020 0.0008 0.0005
CUMULATIVE 0.9937 0.9961 0.9980 0.9988 0.9993

11 12 13 14 15
EIGENVALUE 131.943 90.105628 55.008382 6.696376 0.000000
DIFFERENCE 41.837076 35.097246 48.312006 6.696376
PROPORTION 0.0003 0.0002 0.0001 0.0000 0.0000
CUMULATIVE 0.9996 0.9998 1.0000 1.0000 1.0000

7 FACTORS WILL BE RETAINED BY THE NFACTOR CRITERION

FACTOR PATTERN

FACTOR1 FACTOR2 FACTOR3 FACTOR4

Ni -0.19877 -0.13432 0.48148 0.57186
N2 -0.20292 -0.12832 -0.02040 0.90593
N3 -0.17795 -0.20742 -0.23014 0.57578
N4 -0.20330 0.05244 0.00065 0.46980
N5 -0.18529 0.97969 0.02225 0.02766
N6 -0.15126 0.98542 0.00832 -0.03640
N7 -0.15648 -0.04137 -0.37989 -0.33006
N8 -0.18335 -0.21959 -0.53517 -0.42400
N9 -0.18757 -0.24079 -0.56378 -0.36333
N1O -0.15900 -0.19680 -0.42700 -0.28972
Nll 0.99920 0.01775 -0.00492 0.00842
N12 0.99927 0.02109 0.00468 -0.00557
N13 0.18058 -0.16843 0.56240 -0.34228
N14 -0.06707 -0.24514 0.90319 -0.23811
N15 -0.12555 -0.20739 0.62719 -0.26956
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SAS 10:25 THURSDAY, NOVEMBER 17, 1988 11

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

FACTOR PATTERN

FACTOR5 FACTOR6 FACTOR7

Ni 0.48150 -0.05756 0.34620
N2 -0.10483 0.04619 0.05145
N3 -0.31322 0.25739 -0.21500
N4 0.02493 -u.10222 0.03281
N5 0.01882 0.01837 0.00964
N6 -0.00566 -0.00707 -0.00083
N7 0.12181 -0.76069 0.05687
N8 0.32605 -0.35581 0.22584
N9 0.30511 0.54148 0.19610
N10 0.20166 0.66573 0.09108
Nil 0.02301 0.00074 -0.01930
N12 -0.01867 -0.00001 0.01876
N13 -0.54089 0.05579 0.43959
N14 0.15721 0.06314 -0.06602
N15 0.10366 0.05253 -0.53021

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1 FACTOR2 FACTOR3 FACTOR4
WEIGHTED 327830 39240.1 4653.97 3251.5
UNWEIGHTED 2.379254 2.290014 2.742125 2.453347

FACTOR5 FACTOR6 FACTOR7
WEIGHTED 1389.33 1185.59 888.862
UNWEIGHTED 0.925751 1.534032 0.750323

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED 378439 UNWEIGHTED = 13.074847

Ni N2 N3 N4 N5
COMMUNALITY 0.971407 0.894545 0.669756 0.276938 0.996177
WEIGHT 1725.92 1815.6 635.781 256.352 20443.4

N6 N7 N8 N9 N10
COMMUNALITY 0.995415 0.876172 0.831927 0.967773 0.822432
WEIGHT 19562 611.352 1144.89 1430.55 421.286

Nil N12 N13 N14 N15
COMMUNALITY 0.999704 0.999733 0.983341 0.970099 0.819428
WEIGHT 158259 168568 1333.11 3235.95 486.6
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SAS 10:25 THURSDAY, NOVEMBER 17, 1988 12

ROTATION METHOD: VARIMAX

ORTHOGONAL TRANSFORMATION MATRIX

1 2 3 4

1 0.97862 -0.10489 -0.04100 -0.10351
2 0.07795 0.97525 -0.02533 -0.13565
3 0.01545 0.08443 -0.21935 -0.36267
4 -0.01426 -0.09429 -0.55574 -0.35079
5 0.17838 0.09466 0.39333 0.36092
6 0.05876 0.09909 -0.65129 0.73411
7 0.02281 0.05562 0.24864 0.21709

5 6 7

1 -0.06113 -0.10623 0.06240
2 -0.12170 -0.07018 -0.06353
3 0.71039 0.34420 0.43574
4 -0.38745 0.53772 -0.34603
5 0.31704 0.57280 -0.49561
6 0.11527 -0.02960 0.09732
7 -0.46139 0.49719 0.65373

ROTATED FACTOR PATTERN

FACTORI FACTOR2 FACTOR3 FACTOR4

NI -0.11530 -0.06429 -0.09892 -0.12975
N2 -0.23663 -0.19348 -0.54594 -0.26475
N3 -0.24773 -0.27344 -0.60125 -0.04273
N4 -0.20236 0.02228 -0.16969 -0.21003
N5 -0.10035 0.97829 -0.03964 -0.10912
N6 -0.07201 0.97975 0.00182 -0.11568
N7 -0.17920 -0.08557 0.83170 -0.22675
N8 -0.15636 -0.19196 0.78224 0.29709
N9 -0.11514 -0.13505 0.15548 0.93420
N10 -0.09623 -0,09386 -0.06544 0.88092
Nll 0.98272 -0.08753 -0.04125 -0.10235
N12 0.97679 --0.08405 -0.04211 -0.10871
N13 0.09398 -0.12467 -0.07606 -0.13857
N14 -0.03714 -0.11587 -0.05252 -0.11508
N15 -0.11601 -0.12520 -0.10264 -0.13090
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ROTATION METHOD: VARIMAX

ROTATED FACTOR PATTERN

FACTOR5 FACTOR6 FACTOR7

Ni 0.13526 0.95340 -0.00987
N2 -0.38913 0.47484 -0.23679
N3 -0.32089 -0.03007 -0.25772
N4 -0.19453 0.30438 -0.17916
N5 -0.09918 -0.01151 -0.07492
N6 -0.09289 -0.07325 -0.05426
N7 -0.20270 -0.16815 -0.15568
N8 -0.21981 -0.06773 -0.13255
N9 -0.15029 -0.09636 -0.08666
N1O -0.05876 -0.13096 -0.05884
Nll -0.05371 -0.10100 0.03222
N12 -0.07274 -0.11039 0.08649
N13 0.17372 -0.09076 0.94634
N14 0.85538 0.26252 0.37241
N15 0.86646 -0.10697 -0.02096

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1 FACTOR2 FACTOR3 FACTOR4
WEIGHTED 314247 41017.1 2577.23 6108.56
UNWEIGHTED 2.209478 2.164373 2.054335 2.018439

FACTOR5 FACTOR6 FACTOR7
WEIGHTED 4987.52 6061.13 3440.07
UNWEIGHTED 1.965219 1.403774 1.259229

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 378439 UNWEIGHTED = 13.074847

Ni N2 N3 N4 N5
COMMUNALITY 0.971407 0.894545 0.669756 0.276938 0.996177
WEIGHT 1725.92 1815.6 635.781 256.352 20443.4

N6 N7 N8 N9 N1O
COMMUNALITY 0.995415 0.876172 0.831927 0.967773 0.822432
WEIGHT 19562 611.352 1144.89 1430.55 421.286

Nll N12 N13 N14 N15
COMMUNALITY 0.999704 0.999733 0.983341 0.970099 0.819428
WEIGHT 158259 168568 1333.11 3235.95 486.6
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Appendix J. Time Based Example SAS Input

OPTIONS LINESIZE=80;

* E x TIMEBASED WEIGHT x E';

DATA CONDSPEC;
INPUT Ni N2 N3 N4 N5 N6;
CARDS;

150.0001 0 50.00011 50 0 50
0 132.2815 33.516 20 0 78.7655

50.00011 33.516 203.5161 60 0 60
50 20 60 179.7531 29.7531 20
0 0 0 29.7531 49.7531 20
50 78.7655 60 20 20 228.7655

PROC PRINT;
PROC FACTOR COV NFACTORS 3 ROTATE=VARIMAX

VAR Ni N2 N3 N4 N5 N6
i = 5;

* 0 x EXP(-.025 x T)
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Appendix K. Time Based Example SAS Output File

*SAS 19:15 TUESDAY, NOVEMBER 15, 1988 1

OBS Ni N2 N3 N4 N5 N6

1 150 0.000 50.000 50.000 0.0000 50.000
2 0 132.282 33.516 20.000 0.0000 78.766

*3 50 33.516 203.516 60.000 0.0000 60.000
4 50 20.000 60.000 179.753 29.7531 20.000
5 0 0.000 0.000 29.753 49.7531 20.000
6 50 78.766 60.000 20.000 20.0000 228.766
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SAS 19:15 TUESDAY, NOVEMBER 15, 1988 2

INITIAL FACTOR METHOD: PRINCIPAL COMPONENTS

PRIOR COMMUNALITY ESTIMATES: ONE

EIGENVALUES OF THE COVARIANCE MATRIX: TOTAL = 20880.9 AVERAGE = 3480.14

1 2 3 4 5 6
EIGENVALUE 8596.65 5476.26 3335.78 2277.38 1194.78 0.000000
DIFFERENCE 3120.39 2140.48 1058.4 1082.6 1194.78
PROPORTION 0.4117 0.2623 0.1598 0.1091 0.0572 0.0000
CUMULATIVE 0.4117 0.6740 0.8337 0.9428 1.0000 1.0000

3 FACTORS WILL BE RETAINED BY THE NFACTOR CRITERION

FACTOR PATTERN

FACTORI FACTOR2 FACTOR3

Ni -0.23659 0.44903 0.81477
N2 0.73082 -0.08798 -0.45729
N3 -0.07492 0.93681 -0.31347
N4 -0.71392 0.15703 -0.07350
N5 -0.22437 -0.59802 -0.01519
N6 0.90824 0.21594 0.21135

VARITANCE EXPLATNEP BY EACH FACTOR

FACTOR1 FACTOR2 FACTOR3
WEIGHTED 8596.65 5476.26 3335.78
UNWEIGHTED 1.980602 1.515894 1.021533

FINAL COMMUNALITY FSTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED = 17408.7 UNWEIGHTED = 4.518030

Ni N2 N3 N4 N5 N6
COMMUNALITY 0.921457 0.750958 0.981484 0.539740 0.408201 0.916190
WEIGHT 3000 2712.02 4925.92 3711.13 422.074 6109.71
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SAS 19:15 TUESDAY, NOVEMBER 15, 1988 3

ROTATION METHOD: VARIMAX

ORTHOGONAL TRANSFORMATION MATRIX

1 2 3

1 0.96530 0.08168 -0.24805
2 -0.00667 0.95723 0.28925
3 0.26107 -0.27755 0.92456

ROTATED FACTOR PATTERN

FACTORI FACTOR2 FACTOR3

Ni -0.01866 0.18436 0.94187
N2 0.58666 0.10240 -0.62952
N3 -0.16041 0.97763 -0.00026
N4 -0.70938 0.11240 0.15456
N5 -0.21656 -0.58655 -0.13137
N6 0.93045 0.22222 0.03258

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1 FACTOR2 FACTOR3
WEIGHTED 8237.95 5332.18 3838.56

UNWEIGHTED 1.786114 1.406289 1.325626

FINAL COMMUNALITY ESTIMATES AND VARIABLE WEIGHTS
TOTAL COMMUNALITY: WEIGHTED 17408.7 UNWEIGHTED = 4.518030

* NI N2 N3 N4 N5 N6
COMMUNALITY 0.921457 0.750958 0.981484 0.539740 0.408201 0.916190
hEIGHT 3000 2712.02 4925.92 3711.13 422.074 61nq.71
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Appendix L. Computer Program Code

10
20 THIS PROGRAM DECOMPOSES A DISCRETE EVENT SIMULATION MODEL
30 AND AIDS IN ANALYZING THE MODEL'S STRUCTURE
40
50 THE PROGRAM WAS WRITTEN BY SCOTT MATTHES AT AFIT/EN, WPAFB, OH
60 AS PART OF MY MASTER'S THESIS EFFORT
70
80 INITIALIZATION
90
100 WSTR$="# \

\ V'
110 WSTS ="NODE ATTRIBUTE NODE
ATTRIBUTE"
120 MATH$=" ATTRIBUTE NODE C/I/O NODE
C/I/O W2 W3"
130 MATP="\ \, ## #* ## #

140 BIG = 0
150 '
160 ' OPEN NODE COMPOSITION FILE
170
180 OPEN "NODE.CMP" FOR OUTPUT AS *5
190 KEY OFF
200 DIM RSVW$(100), A$(2000)
210 9
220 ' READ IN RESERVE WORDS
230
240 RWDN = 0
250 OPEN "RESERVE.WRDS" FOR INPUT AS #1
260 WHILE NOT EOF(1)
270 RWDN = RW DN + 1
280 LINE INPUT*I,RSVW$(RWDN)
290 WEND
300 CLOSE #1
J10 '
320 ' ADD RESERVE WORDS
330'
340 CLS
350 LOCATE 10,20:INPUT "HOW MANY KEY WORDS DO YOU HAVE? ",KW
360 DIM KWRD$(KW)
370 CLS
380 FOR J=I TO KW
390 LOCATE 10,20:PRINT "KEY WORD NUMBER";J;:INPUT"IS ",KWRDS(J)
400 CLS
410 NEXT J
420 INAT$ = " INPUT ATTRIBUTE

430 OTAT$ = " OUTPUT ATTRIBUTE

440 K=l
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450 REM NN$ IS NODE NAME
460 CV$ = " CONTROL ATTRIBUTE

470 NN$ = " NODE ##

480 CLS
490 '
500 ' ENTER FILE TO BE DECOMPOSED
510
52C LOCATE 10,20:PRINT "NAME OF FILE TO BE DECOMPOSED: ":LOCATE
12,26:INPUT . ",INPF$
530 CLS
540 '
550 ' WORK ON NODES
560
570 FOR KTR = 1 TO 2
580 NE = 0
590 NODE = 0
600 NL = 0
610 OPEN INPF$ FOR INPUT AS #1
620 WHILE NOT EOF(1)
630 NL = NL + 1
640 LINE INPUT#1,A$(NL)
650 WEND
660 CLOSE #1
670 FOR I=l TO NL
680 BL2 = 0
690 BL=INSTR(A$(I),"{")
700 EL=INSTR(A$(I),"}")
710'

720 ' NODE NAMES
730
740 IF BL = 0 TiiEN GOTO 870
750 BN=BL+1
760 EN=EL-BN
770 N$ = MID$(A$(I),BN,EN)
780 IF BL<>O THEN CN$=N$
790 IF KTR = 2 THEN 830
800 IF NI > BIG THEN BIG = NI
810 IF NO > BIG THEN BIG = NO
820 IF NC > BIG THEN BIG = NC
830 NI = 0
840 NO = 0
850 NC = 0
860 NODE = NODE + 1
870 IF CN$="INITIALIZATION" OR CN$="Initialization" OR CN$="TERMINATION"
OR CN$="Termination" THEN 3160
880 IF BL=O THEN GOTO 1050
890 IF KTR = 1 THEN LOCATE 10,20 : PRINT "FINDING ATTRIBUTES"
900 IF KTR = 1 THEN 1010
910 IF K=I THEN 960
920 LOCATE 23,28:PRINT "TYPE ANY KEY TO CONTINUE"
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930 PRINT#5,:PRINT#5,:PRINT#5,
940 WHILE INKEY$='":WEND

*950 CLS
960 PRINT USING NNS;NODE,NS
970 PRINT#5,USING NN$;NODE,N$
980 PRINT:PRINT
990 PRINT#5,:PRINT#5,
1000 K=K+1

*1010 GOTO 3160
1020
1030 'CRE.ATE STATEMENT
1040
1050 BL:INSTR(AS( I), "CREATE")
1060 IF BL=0 THEN 1260

*1070 BN=BL+7
1080 MP=INSTR(A$(I),",")
1090 OVS=MID$(A$(I),BN,MP-BN)
1100 NO=NO+1
1110 IF KTR=1 THEN 1220
1120 PRINT USING OTATS;OVS

*1130 EP=INSTR(A$(I),")")
1140 CRSB$=MIDS(A$(I),MP+1,EP-MP-1)
1150 OPEN "TEMP.DAT" FOR OUTPUT AS #2
1160 PRINT*2,OV$; r[t,;CRSB$;"I"
1170 CLOSE #2
1180 OPEN "TEMP.DAT" FOR INPUT AS #3

*1190 LINE INPUT#3,WM$(NODE,3,NO)
1200 CLOSE #3
1210 PRINT#5,USING OTAT$;OVS
1220 GOTO 3160
1230
1240 'DESTROY STATEMENT

* 1250
1260 BL=INSTR(A$(I ),"DESTROY")
1270 IF BL=0 THEN 1470
1280 BN=BL+B

1300 IV$=MID$(A$(I),BN,MP-BN)
*1310 NI=Nl+l

1320 IF KTR~1 THEN 1430
1330 PRINT USING INAT$;IVS
1340 EP=INSTR(AS(I),")")
1350 DESB$=MID$(A$( I) ,MP+1 ,EP-MP-1)
1360 OPEN "TEMP.DAT" FOR OUTPUT AS #2

*1370 PRINT#2,IV$;f"f;DESB$;f"
1'180 CLOSE #2
1390 OPEN "TEMP.DAT" FOR INPUT AS #3
1400 LINE INPUT#3,WM$(NODE,2,NI)
1410 CLOSE #3
1420 PRINT#5,USING INAT$;IV$

*1430 GOTO 3160
1440
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1450 ' NODE CONTENTS
1460
1470 BL=INSTR(A$(I),"WHEN ALARM")
1480 IF BL=O THEN 1650
1490 KIND = 1
1500 SOP=INSTR(A$(I),"((")
1510 IF SOP=O THEN 1620
1520 ESP=INSTR(SOP,A$(I),")")
1530 CVW$=MID$(A$(I),SOP+2,ESP-SOP-2)
1540 NC = NC + 1
1550 IF KTR = 1 THEN 1590
1560 PRINT USING CV$;CVW$
1570 WM$(NODE,1,NC) = CVW$
1580 PRINT#5, USING CV$;CVW$
1590 LOOP=O
1600 ECV=ESP-2
1610 GOTO 1880
1620 BN=BL+11
1630 GOTO 1710
1640 GOTO 3160
1650 BL=INSTR(A$(I),"END WHEN")
1660 IF BL<>O THEN 3160
1670 BL=INSTR(A(I),"WHEN")
1680 IF BL=O THEN 2160
1690 KIND = 2
1700 BN=BL+5
1710 EN = INSTR(A$(1),");")
1720 IF EN = 0 THEN EN = INSTR(A$(I),";")
1730 IF EN = 0 THEN GOSUB 7210
1740 SPCH = 1
1750 '
1760 ' TEST FOR OPERATOR
1770
1780 LOOP = 0
1790 GOSUB 6340
1800 IF ECV = 0 AND LOOP = 0 THEN 2060
1810 IF ECV = 0 THEN 3160
1820 CVW$ = MID$(A$(I),BN,ECV-BN)
1830 NC = NC + 1
1840 IF KTR = 1 THEN 1880
1850 PRINT USING CV$;CVWS
1860 WM$(NODE,1,NC) = CVW$
1870 PRINT#5,USING CV$;CVW$
1880 SPCH = ECV + 2
1890 BN = INSTR(SPCH,A$(I)," & ")+3
1900 FOUR = 4
1910 IF BN 3 THEN BN = INSTR(SPCH,A$(I),");")+3
1920 IF BN = 3 THEN BN = INSTR(SPCH,A$(I),";")+3
1930 IF BN = 3 THEN 3160
1940 IF ESPO0 THEN 2030
1950 IF CASE = 2 THEN BN = BN + 1 : FOUR = FOUR + 1 SPCH = SPCH + 1
1960 IV$=MID$(A$(I),SPCH.1,BN-SPCH-FOUR)
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1970 GOSUB 6990
1980 IF TEST=O THEN NI = NI + 1
1990 IF TEST=O AND KTR = 1 THEN 2030
2000 IF TEST=0 THEN PRINT USING INAT$;IVS
2010 IF TEST=0 THEN WM$(NODE,2,NI) = IV$
2020 IF TEST=O THEN PRINT#5,USING INATS;IVS
2030 LOOP = LOOP + 1
2040 ESP=O
2050 GOTO 1790
2060 CVW$ = MID$(A$(I),BN,EN-BN)
2070 NC = NC + 1
2080 IF KTR = 1 THEN 2120
2090 PRINT USING CV$;CVWS
2100 WM$(NODE,1,NC) = CVW$
2110 PRINT*5,USING CVS;CVW$
2120 GOTO 3160
2130 '
2140 ' SET ALARM STATEMENT
2150
2160 BL=INSTR(A$(I),"SET ALARM")
2170 IF BL=0 THEN 2600
2180 KIND = 3
2190 BN=BL+10
2200 SOP=INSTR(BN+3,A$(I),'(")
2210 COMA=INSTR(A$(1),", ")
2220 IF SOP > COMA THEN 2250
2230 IF SOP>O THEN CP=INSTR(BN+3,A$(I),")")
2240 IF SOP>0 THEN MP=INSTR(CP,A$(I),",") GOTO 2270
2250 MP=INSTR(A$(I),"], ")+l
2260 IF MP < 2 THEN MP=INSTR(A$(I),",")
2270 OV$=MID$(AS(1),BN,MP-BN)
2280 NO = NO + 1
2290 IF KTR = 1 THEN 2330
2300 PRINT USING OTAT$;OV$
2310 WMS(NODE,3,NO) = OV$
2320 PRINT#5,USING OTAT$;OV$
2330 EP=INSTR(A$(I),");")
2340 EPP=INSTR(20,A$(I)," ')
2350 IF EP(>0 THEN 2490
2360 MP=INSTR(A$(I),"], ")+l
2370 IF MP < 2 THEN MP=INSTR(AS(1),",")
2380 AS(I)=MIDS(A$(I),MP+2,60)
2390 BN=1
2400 GOSUB 7210

* 2410 GOSUB 6480
2420 NI = NI + 1
2430 IF KTR = 1 THEN 2470
2440 PRINT USING INATS;IVS
2450 WM$(NODE,2,NI) = IV$
2460 PRINT#5,USING INAT$;IV$

* 2470 TEMPS=""
2480 GOTO 2590
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2490 IV$=MID$(AS(I),MP+2,EP-MP-2)
2500 GOSUB 6480
22510 GOSUB 6990
2520 IF TEST=l THEN 3160
2530 IF IV$=""' THEN 2590
2540 NI = NI + 1
2550 IF KTR = 1 THEN 2590
2560 PRINT USING INAT$;IVS

*2570 %7MS(NODE,2,NI) = 117$
2580 PRINT*5,USING INATS;IV$
2590 GOTO 3160
2600
2610 'INPUT ATTRIBUTES
2620

*2630 BL. = INSTR(A$(I),':=')
2640 IF BL=0 THEN 3160
2650 KIND = 4
2660 HOLDS=A$(I)
2670 BN=BL+4
2680 EN=INSTR(AS(I),";")

* 2690 IF EN(>0 THEN 2810
2700 GOSUB 7210
2710 GOSUB 6720
2720 EN = INSTR(IV$,")")
2730 IF EN =0 THEN EI = INSTR(IVS,";")
2740 IV$ =MIDS(IVS,BN,EN-BN)

*2750 N Ni +1
2760 IF KTR =1 THEN 2800
2770 PRINT USING INATS;IVS
2780 %M$(NODE,2,NI) = IV$
2790 PRINT*5,USING INATS;IVS
2800 GOTO 3040

*2810 IV$ = MID$(A$(I),BN,EN-BN)
2820 GOSUB 6500
2830 GOSUB 6720
2840 GOSUB 6990
2850 IF TEST = 1 THEN 3040
2860 NI = NI + 1

*2870 IF KTR = 1 THEN 2910
2880 PRINT USING INAT$;IV$
2890 WMS(NODE,2,NI) = IV$
2900 PRINT#5,USING INAT$;IV$
2910 IV$=TEMP$
2920 TEMP$=""

*2930 GOSUB 6990
2940 IF TEST = 1 THEN 3040
2950 IF IV$="" THEN 3040
2960 NI = NI + 1
2970 IF KTR = 1 THEN 3040
2980 PRINT USING INAT$;IVS

*2990 WM(NODE,2,NI) = IV$
3000 PRINT#5,USING INATS;IVS
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3010
3020 ' OUTPUT ATTRIBUTES
3030'
3040 FOR J=l TO 50
3050 IF MID$(HOLD$,J,1)=" THEN 3070
3060 BO=J:J=50
3070 NEXT J
3080 EO=BL-BO-1
3090 KIND = 5
3100 OVS=MID$(HOLD$,BO,EO)
3110 NO = NO + 1
3120 IF KTR = 1 THEN 3160
3130 PRINT USING OTAT$;OV$
3140 WM$(NODE,3,NO) = OVS
3150 PRINT#5,USING OTATS;OV$
3160 NEXT I
3170 IF KTR = 1 THEN BIG=BIG+4:DIM
W1M$(NODE,3,BIG),WMR$(NODE,3,BIG),SUBS(NODE,3,BIG,7),SUBS$(NODE*3*BIG*7),T
E(NODE,3),SB(NODE,3,BIG)
3180 IF KTR=2 THEN LOCATE 23,28:PRINT "TYPE ANY KEY TO CONTINUE":WHILE
INKEY$= ':WEND
3190 CLS
3200 NEXT KTR
3210 CLOSE #5
3220 '
3230 ' FIND SUBSCRIPTS
3240
3250 LOCATE 10,20:PRINT"IDENTIFYING SUBCRIPTS OF ATTRIBUTES"
3260 OPEN "EDGE. INF" FOR OUTPUT AS #4
3270 NOV = 0
3280 ERASE A$,RSVW$,KWRD$
3290 FOR A=l TO NODE
3300 FOR B=I TO 3
3310 TE(A,B)=0
3320 FOR C=1 TO BIG
3330 SB(A,B,C)=l
3340 NEXT C
3350 NEXT B
3360 NEXT A
3370 DIM NSUB(NODE,3,BIG)
3380 FOR C = 1 TO NODE
3390 FOR B = 1 TO 3
3400 FOR A = 1 TO BIG
3410 IF WM$(C,B,A)="" THEN 3500
3420 PRINT#4, USING "## # ## ";C,B,A;:PRINT#4,WM$(C,B,A)
3430 BEG=INSTR(WM$(C,B,A),"[")
3440 IF BEG = 0 THEN WMR$(C,B,A)=WM$(C,B,A):GOTO 3490
3450 WMR$(CB,A)=MID$(WM$(C,B,A),1,BEG-1)
3460 PRINT#4, USING "## # ## ";C,B,A;:PRINT#4,WMR$(C,B,A)
3470 GOSUB 7390
3480 NSUB(C,B,A)=D-FS
3490 NOV = NOV + 1
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3500 NEXT A
3510 NEXT B

* 3520 NEXT C
3530 CLOSE#4
3540 ERASE TE
3550 E=O
3560 FOR A =1 TO NODE
3570 FOR B =1 TO 3

* 3580 FOR C =1 TO BIG
3590 FOR D =1 TO 5
3600 IF SUBS(A,B,C,D) = .. THEN 3630
3610 E=E+l
3620 SUBSS(E)=SUBS(A,B,C,D)
3630 NEXT D

* 3640 NEXT C
3650 NEXT B
3660 NEXT A
3670 DIM SU$(E)
3680 F=0
3690 FOR A=l TO E

• 3700 FOR B=1 TO E
3710 IF SUBS$(A)=SUBS$(B) THEN TMP$=SUBSS(A) ELSE 3770
3720 CK = 0
3730 FOR C=1 TO F
3740 IF TMP$=SU$(C) THEN CK=2:C=F
3750 NEXT C

* 3760 IF CK=O THEN F=F+1:SU$(F)=TMP$
3770 NEXT B
3780 NEXT A
3790 ERASE SUBS$
3800 SUBS=F
3810 DIM SUBS$(F),SUB(F)

* 3820 FOR G=1 TO F
3830 SUBS$(G) = SU$(G)
3840 FOR A=0 TO 9
3850 TEST = 0
3860 IF SUBS$(G)<>CHR$(48+A) THEN 3900
3870 SUB(G)=l

• 3880 TEST=I
3890 A=9
3900 NEXT A
3910 IF TEST=I THEN 3950
3920 IF G=I THEN BEEP:BEEP:BEEP
3930 LOCATE 10,10:PRINT"ENTER A MAXIMUM VALUE FOR THE SUBSCRIPT
I ";SUBS$(G);:INPUT " ";SUB(G)
3940 CLS
3950 NEXT G
3960 '
3970 ' FIND NETWORK REPRESENTATION
3980

* 3990 LOCATE 10,20:PRINT"FINDING NETWORK REPRESENTATION"
4000 ERASE SU$
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4 F A

4010 FOR A=I TO NODE

4020 FOR B=I TO 3
4030 FOR C=1 TO BIG
4040 FOR D=l TO 7
4050 FOR G=I TO F
4060 IF SUB$(A,B,C,D)<>SUBS$(G) THEN 4090
4070 SB(A,B,C)=SB(A,B,C)*SUB(G)
4080 G=F
4090 NEXT G
4100 NEXT D
4110 NEXT C
4120 NEXT B
4130 NEXT A
4140 '
4150 ' WRITE DIAGNOSTICS
4160
4170 OPEN "INF.DAT" FOR OUTPUT AS #4
4180 PRINT#4, MATH$
4190 DIM Wl(NODE,NODE),CM(NODE,NODE),W2(NODE,NODE)
4200 FOR C=l TO NODE
4210 FOR D=l TO NODE
4220 WI(C,D)=O
4230 W2(C,D)=0
4240 NEXT D
4250 NEXT C
4260 OPEN "ERRORS.DAT" FOR OUTPUT AS #5
4270 PRINT#5,"NON-MATCHING SUBSCRIPTS":PRINT#5,
4280 PRINT#5,WSTS:PRINT#5,:PRINT*5,
4290 FOR C=1 TO NODE
4300 FOR B=I TO BIG
4310 FOR A=l TO BIG
4320 IF WMR$(C,1,B)=WMR$(C,2,A) AND WMRS(C,1,B)<>." THEN WMR$(C,2,A)=""
4330 IF A <= B THEN 4370
4340 IF WMR$(C,1,B)=WMR$(C,1,A) AND WMR$(C,1,B)<>.. THEN WMRS(C,1,A)=""
4350 IF WMR$(C,2,B)=WMR$(C,2,A) AND WMR$(C,2,B)<>"" THEN WMR$(C,2,A)=I...
4360 IF WMR$(C,3,B)=WMR$(C,3,A) AND WMR$(C,3,B)<>"" THEN WMR$(C,3,A)=""
4370 NEXT A
4380 NEXT B
4390 NEXT C
4400 FOR C = 1 TO (NODE-i)
4410 FOR B = 1 TO 3
4420 FOR A = 1 TO BIG
4430 IF WMR$(C,B,A) = "" THEN 4680
4440 FOR X=l TO NODE
4450 IF X < C THEN 4670
4460 FOR XY = 1 TO 3
4470 IF (X=C AND XY<B) OR (B=XY) OR (B=1 AND XY=2) OR (B=2 AND XY=1)
THEN 4660
4480 FOR Y=1 TO BIG
4490 IF X=C AND XY=B AND Y=C THEN 4650
4500 IF WMR$(C,B,A) > WMR$(X,XY,Y) OR C = X THEN 4650
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4510 IF WM$(C,B,A)<>WM$(X,XY,Y) AND WM$(C,B,A)<>"" AND WM$(XXYY)O>"'
AND NSUB(C,B,A)(>NSUB(X,XY,Y) THEN PRINT#5,"FATAL ERROR!!! Subscripts
are not compatible! Results will be inaccurate!!!"
4520 IF WM$(C,B,A)<>WMS(X,XY,Y) AND WM$(C,B,A)<>"" AND WM$(x,XY,Y)<>""
AND NSUB(C,B,A)<>NSUB(X,XY,Y) THEN PRINT#5,t'SING
WSTR$;C,WM$(C,B,A),X,WM$(X,XY,Y):PRINT#5,:GOTO 4650
4530 IF WM$(C,B,A)i <> WM$(X,XY,Y) AND WM$(C,B,A) 0> "" AND WM$(X,XY,Y)

0 "THEN PRINT*5,"Warning: Subscripts do not match
exactly":PRINT45,USING WSTR$;C,WM$(C,B,A) ,X,WM$(X,XY,Y):PRINTz5,
4540 CK1=0
4550 FOR L = 1 TO NSUB(C,B,A)
4560 IF SUB$(C,B,A,L)=SUB$(X,XY,Y,L) THEN 4580
4570 IF SUBS(C,B,A,L)>"/" AND SUB$(C,B,A,L)(":" AND SUB$(X,XY,Y,L)>'f/"
AND SUB$(X,XY,Y,L)(":' THEN CK1=1:L=NSiB(C,B,A):PRINT#5," **The

above edge has been disregarded ***"*:PRINT*5,
4580 NEXT L
4590 IF CK1=1 THEN 4650
4600 W1(C,X) = W1(C,X) + 1
4610 IF B <> 3 THEN SBS = SB(C,B,A) ELSE SBS = SB(X,XY,Y)
4620 W2(C,X) = W2(C,X) + SBS
4630 PRINT#4, USING MATP$;WMR$(C,B,A) ,C,B,X,XY,W1(C,X) ,W2(C,X)
4640 EDG = EDG + l:Y=BIG:XY=3
4650 NEXT Y
4660 NEXT XY
4670 NEXT X
4680 NEXT A
4690 NEXT B
4700 NEXT C
4710 ERASE SUB$
4720 PRINT#4,:PRINT#4,"NUMBER OF EDGES =";EDG
4730 CLOSE #4
4740 NWE=0
4750 FOR C=1 TO NODE
4760 FOR D=1 TO NODE
4770 IF Wl(C,D)0O THEN NWE=NWE+l
4780 NEXT D
4790 NEXT C
4800 CLS
4810 LOCATE 10,20:PRINT"CREATING EDGE MATRIX"
4820 OPEN "INF.DAT" FOR INPUT AS #4
4830 LINE INPUT#4, D$
4840 DIM BS(EDG)
4850 FOR A = 1 TO EDG
4860 INPlJT#4, BS(A),D,D,D,D,D,D
4870 NEXT A
4880 CLOSE #4
4890 PRINT#5,CHRS(12):PRINT#5,"ATTRIBUTES WITHOUT A
COUNTERPART": PRINT#5, :PRINT#5,"
ATTRI BUTE NODE TYPE":PRINT#5, :PRINT#5,
4900 FOR D = 1 TO NODE
4910 FOR E = 1 TO 3
4920 FOR F =1 TO BIG
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4930 MACH = 0
4940 FOR C = 1 TO EDG
4950 IF B$(C) = WMR$(D,E,F) THEN MACH = 1:C=EDG
4960 NEXT C
4970 IF MACH=1 THEN 5030
4980 IF MACH = 0 AND WMR$(D,E,F) = .. THEN 5030
4990 IF E=l THEN TYP$="CONTROL"
5000 IF E=2 THEN TYPS="INPUT"
5610 IF E=3 THEN TYP$="OUTPUT'"
5020 IF MACH = 0 THEN PRINT#5, USING

\";WMRS(D,E,F),D,TFYP$
5030 NEXT F
5040 NEXT E
5050 NEXT D
5060 CLOSE ;5
5070 ERASE B$,WMS,%MRS
5080 DIM EM(NODE,NWE),WM(NWE,NWE),IM(NODE,NWE)
5090 FOR C=1 TO NODE
5100 FOR D=l TO NWE
5110 EM(C,D)=O
5120 NEXT D
5130 NEXT C
5140 B=I
5150 FOR C=1 TO NODE
5160 FOR D=l TO NODE
5170 IF WI(C,D)>O THEN EM(C,B)=I:EM(D,B)=I:B=B+I
5180 NEXT D
5190 NEXT C
5200 '
5210 ' GET WEIGHT FOR MATRIX
5220
5230 DIM SUM(NODE),DIA1(NWE),DIA2(NWE)
5240 FOR C=I TO NODE
5250 SUM(C)=0
5260 FOR D=l TO NWE
5270 SUN(C)=SUM(C)+EM(C,D)
5280 IF SUM(C)>0 THEN D=NWE
5290 NEXT D
5300 NEXT C
5310 B=O
5320 HI=O:H2=0
5330 FOR C=1 TO NODE
5340 IF SLM(C)=O THEN 5430
5350 B=B+I
5360 FOR D=l TO NWE
5370 EM(B,D)=EM(C,D)
5380 NEXT D
5390 FOR A=l TO NODE
5400 IF WI(C,A)>O THEN HI=HI+I:DIA1(H1)=WI(C,A)
5410 IF W2(C,A)>O THEN H2=H2+1:DIA2(H2)=W2(C,A)
5420 NEXT A
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5430 NEXT C
5440 ERASE SUM
5450 NODE=B
5460 CLS
5470 '
5480 ' CREATE SAS FILE
5490
5500 LOCATE 3,15:PRINT"OPTIONS OF MATRIX MULTIPLICATIONS"
5510 LOCATE 6,22:PRINT"1. E x E'
5520 LOCATE 8,22:PRINT"2. E x W2 x E'"
5530 LOCATE 10,22:PRINT"3. E x W3 x E'
5540 LOCATE 12,22:PRINT"4. BOTH I & 2"
5550 LOCATE 14,22:PRINT"5. BOTH 1 & 3"
5560 LOCATE 16,22:PRINT"6. BOTH 2 & 3"
5570 LOCATE 18,22:PRINT"7. ALL 3 (1 & 2 & 3)"
5530 BEEP:BEEP:BEEP
5590 LOCATE 21,22:INPUT "ENTER CHOICE ",CH
5600 IF CH > 7 THEN CLS:SYSTEM
5610 NT=1
5620 CLS
5630 LOCATE 10,10:INPUT"ENTER SAS FILENAME (ie COND.SAS) ",SASF$
5640 OPEN SASF$ FOR OUTPUT AS #2
5650 PRINT#2,"OPTIONS LINESIZE=80;"
5660 CLS
5670 IF CH <> 1 AND CH <> 4 AND CH 0 5 AND CH <> 7 THEN 5890
5680 CLS
5690 LOCATE 3,10:PRINT "FOR E x E'
5700 LOCATE 10,15:INPUT"ENTER NUMBER OF FACTORS TO BE RETAINED ",PV
5710 CLS
5720 PRINT#2,"*;"
5730 PRINT#2,"* E x E';"
5740 PRINT#2,"*;"
5750 PRINT " E x E'":PRINT
5760 FOR A=l TO NODE
5770 FOR B=I TO NODE
5780 CM(A,B)=O
5790 FOR C=1 TO NWE
5800 CM(A,B) = CM(A,B) + EM(A,C) * EM(B,C)
5810 NEXT C
5820 PRINT USING " ##";CM(A,B);
5830 NEXT B
5840 PRINT
5850 NEXT A
5860 GOSUB 8100
5870 BEEP:BEEP:BEEP
5880 LOCATE 1,50:PRINT"*** HIT A KEY TO CONTINUE ***":WHILE
INKEY$="":WEND
5890 DIM DIA(NWE)
5900 IF CH 0 2 AND CH > 4 AND CH o 6 AND CH <> 7 THEN 6040
5910 CLS
5920 LOCATE 3,10:PRINT "FOR E x W2 x E'
5930 LOCATE 10,15:INPUT"ENTER NUMBER OF FACTORS TO BE RETAINED ",PV
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5940 CLS
5950 PRINT#2,"*;"
5960 PRINT#2,"* E x W2 x E';"
5970 PRINT#2,"*;"
5980 FOR C=1 TO NWE
5990 DIA(C)=DIA1(C)
6000 NEXT C
6010 GOSUB 7740
6020 BEEP:BEEP:BEEP
6030 LOCATE 1,50:PRINT"*** HIT A KEY TO CONTINUE ***":WHILE
INKEY$="" : WEND
6040 IF CH 0 3 AND CH 0 5 AND CH <> 6 AND CH 0 7 THEN 6280
6050 CLS
6060 LOCATE 3,10:PRINT "FOR E x W3 x E'
6070 LOCATE 10,15:INPUT"ENTER NUMBER OF FACTORS TO BE RETAINED ",PV
6080 CLS
6090 PRINT#2,"*;"
6100 PRINT#2,"* E x W3 x E';"
6110 PRINT#2,"*;"
6120 FOR C=1 TO NWE
6130 DIA(C)=DIA2(C)
6140 NEXT C
6150 GOSUB 7740
6160 FOR A=l TO SUBS
6170 TEST=O
6180 FOR B=0 TO 9
6190 IF SUBS$(A)<>CHRS(48+B) THEN 6220
6200 B=9
6210 TEST=I
6220 NEXT B
6230 IF TEST=O THEN PRINT USING "\ \ = ###";SUBS$(A),SUB(A)
6240 IF TEST=O THEN PRINT#2, USING "* \ \ = ## ;";SUBS$(A),SUB(A)
6250 NEXT A
6260 BEEP:BEEP:BEEP
6270 LOCATE 1,50:PRINT"*** HIT A KEY TO CONTINUE ***":WHILE
INKEYS="":WEND
6280 CLS
6290 CLOSE #2
6300 SYSTEM
6310 '
6320 ' OPERATOR TEST ROUTINE
6330
6340 CASE = 1
6350 ECV = INSTR(SPCH,A$(I)," =
6360 IF ECV > 0 THEN RETURN
6370 ECV = INSTR(SPCH,AS(I)," > ")
6380 IF ECV 0 0 THEN RETURN
6390 ECV = INSTR(SPCH,A$(I)," < ")
6400 IF ECV o 0 THEN RETURN
6410 ECV = INSTR(SPCH,A$(I),'<0")
6420 IF ECV 0 0 THEN CASE = 2:ECV=ECV-1:RETURN
6430 ECV = INSTR(SPCH,A$(I),"<=")
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6440 IF ECV <> 0 THEN CASE = 2:ECV=ECV-1:RETURN
6450 ECV = INSTR(SPCH,A$(I),">=")

* 6460 IF ECV <> 0 THEN CASE = 2:ECV=ECV-I:RETURN
6470 RETURN
6480 '
6490 ' INPUT PARAMETER ROUTINE
6500
6510 SAIP = INSTR(IV$,"(") + 1

* 6520 SAEP = INSTR(IV$,")")
6530 IF SAEP = 0 THEN RETURN
6540 SAP = SAEP - SAIP
6550 IV$ = MID$(IV$,SAIP,SAP)
6560 INPP = INSTR(IVS,", ")
6570 IF INPP = 0 THEN RETURN

* 6580 TEM$=IVS
6590 TEMP$ = MID$(TEM$,INPP+2,SAEP-INPP-2)
6600 IV$ = MID$(IVS,1,INPP-1)
6610 IF KIND <> 3 THEN RETURN
6620 GOSUB 6990
6630 IF TEST=I OR IV$=*"' THEN 6690

* 6640 NI=NI+I
6650 IF KTR=1 THEN 6690
6660 PRINT USING INATS;IV$
"670 WM$(NODE,2,NI)=IV$
6680 PRINT#5,USING INATS;IVS
6690 ' TEMPS = MID$(TEMS,INPP+2,SAEP-INPP-2)
6700 IV$ = TEMPS

6710 RETURN
6720 SEP = INSTR(IV$,"+")
6730 IF SEP = 0 THEN SEP = INSTR(IV$,"-")
6740 IF SEP = 0 THEN SEP = INSTR(IV$,"*")
6750 IF SEP = 0 THEN SEP = INSTR(IV$,"/")

* 6760 IF SEP = 0 THEN RETURN
6770 FOR J=l TO 50
6780 IF MIDS(IVS,J,1)=" " THEN 6800
6790 BN = J :J=50
6800 NEXT J
6810 IF SFP = 0 THEN 6510

* 6820 IVT$ = MID$(iV$,BN,SEP-2)
6830 IF LEFT$(IVT$,I)="(" THEN IVT$=MIDS(IVS,BN+1,SEP-3)
6840 HLD$ = MID$(IV$,SEP+2,50)
6850 IV$=IVTS
6860 GOSUB 6990
6870 IF TEST = 1 THEN 6930

* 6880 NI = NI + 1
6890 IF KTR = 1 THEN 6930
6900 PRINT USING INAT$;IV$
6910 WM$(NODE,2,NI) = IV$
6920 PRINT#5,USING INATS;IV$
6930 IV$ = HLD$

* 6940 GOTO 6720
6950 RETURN
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6960
6970 ' CHECK FOR RESERVED , KEY WORDS , AND / OR NUMBERS

• 6980
6990 TEST = 0
7000 FOR M = 1 TO RWDN
7010 IF IVS<>RSVWS(M) THEN 7040
7020 M = RWDN
7030 TEST = 1

* 7040 NEXT M
7050 IF TEST = 1 THEN RETURN
7060 FOR M = I TO KW
7070 IF IV$ 0 KWRD$(M) THEN 7100
7080 M = KW
7090 TEST = 1

* 7100 NEXT M
7110 IF TEST = 1 THEN RETURN
7120 FOR M = 0 TO 9
7130 IF LEFTS(IV$,1) <> CHRS(48+M) THEN 7160
7140 M = 9
7150 TEST = 1

* 7160 NEXT M
7170 RETURN
7180 '
7190 ' TWO LINE ROUTINE
7200 '
7210 FOR J = 1 TO 50

* 7220 IF MID$(AS(I+]),J,1)=" THEN 7240
7230 BL2=J: J=50
7240 NEXT J
7250 IVP1$ = MID$(AS(I),BN,65)
7260 IVP2$ = MID$(A$(I+1),BL2,50)
7270 OPEN "TEMP.DAT" FOR OUTPUT AS #2

* 7280 PRINT#2,IVP1$;IVP2$
7290 CLOSE #2
7300 OPEN "TEMP.DAT" FOR INPUT AS #3
7310 LINE INPUT#3,IV$
7320 CLOSE #3
7330 A$(I) = IV$ : BN=l

* 7340 KILL "TEMP.DAT"
7350 RETURN
7360
7370 , SUBSCRIPT ROUTINE
7380
7390 D=O

• 7400 FS=O
7410 BEG=BEG+I
7420 COMA = INSTR(BEG,WM$(C,B,A),"[")
7430 1 = 1000
7440 CM=0
7450 IF COMA > 0 THEN I=COMA

* 7460 COMA = INSTR(BEG,WM$(C,B,A),",")
7470 IF COMA < I AND COMA > 0 THEN I = COMA
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7480 COMA = INSTR(BEG,WM$(C,B,A),"]")
7490 IF COMA < I AND COMA > 0 THEN I = COMA:CM=2
7500 IF I = 1000 THEN RETURN
7510 COMA = I
7520 D=D+I
7530 IF COMA-BEG=O THEN RETURN
7540 SUB$(C,B,A,D)=MID$(WM$(C,B,A),BEG,COMA-BEG)
7550 IF LEN(SUB$(C,B,A,D)) > 3 THEN GOSUB 7610
'7560 IF CM < 2 THEN BEG=COMA+1 ELSE BEG=COMA+2
7570 GOTO 7420
7580 '
7590 ' SUBSCRIPT THAT IS NOT A SUBSCRIPT ROUTINE
7600
7610 IF SUBS(C,B,A,D)=" THEN 7700
7620 J=B
7630 IF J<3 THEN J=2
7640 AMR$(C,J,BIG-TE(C,J))=SUB$(C,B,A,D)
7650 PRINT#4, USING "## ## ";C,J,BIG-
TE(C,J);:PRINTa4,"*"; MR$(C,J,BIG-TE(C,J));"*"
7660 PRINT#4,"THE PRECEDING IS A FORMER SUBSCRIPT"
7670 FS=FS+I
7680 SUB$(C,B,A,D)=""
7690 TE(C,J)=TE(C,J)+I
7700 RETURN
7710 '
7720 ' MATRIX MANIPULATION
7730
7740 CLS
7750 LOCATE 10,20:PRINT"CREATING WEIGHT MATRIX"
7760 FOR C=I TO NWE
7770 FOR D=l TO NWE
7780 WM(C,D)=O
7790 NEXT D
7800 NEXT C
7810 '
7820 FOR C=I TO NWE
7830 WM(C,C)=DIA(C)
7840 NEXT C
7850 '
7860 CLS
7870 IF NT=2 OR CH=3 OR CH=5 THEN PRINT " E x W3 x E'" ELSE PRINT
" E x W2 x E'"
7880 PRINT
7890 FOR A=l TO NODE
7900 FOR B=1 TO NWE
7910 IM(A,B)=O
7920 FOR C=1 TO NWE
7930 IM(A,B)=IM(A,B) + EM(A,Cl * WM(C,B)
7940 NEXT C
7950 NEXT B
7960 NEXT A
7970
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7980 FOR A~l TO NODE
7990 FOR Brl TO NODE

*8000 CM(A,B)=0
8010 FOR C=l TO NWE
8020 CM(A,B) = CM(A,B) + IM(A,C) *EM(B,C)
8030 NEXT C
8040 PRINT USING " #v"C(,)
8050 NEXT B

*8060 PRINT
8070 NEXT A
8080 PRINT
8090 NT =NT + 1
8100 PRINT#2,'DATA CONDSPEC;"
8110 PRINT;2,"INPUT ";

*8120 FOR A=l TO (NODE-i)
8130 IF A>9 THEN PRINT#2, USING "N*# ";A; ELSE PRINT#2, USING "Nit

.;A;

8140 NEXT A
8150 IF NODE>9 THEN PRINT#2, USING " N## ;";NODE ELSE PRINT#2, USING
N* ;";NODE

*8160 PRINT#2,"CARDS;"
8170 FOR A=l TO NODE
8180 FOR B=I TO NODE
8190 PRINT#2, USING " *#"C(,)
8200 NEXT B
8210 PRINT#2,

*8220 NEXT A
8230 PRINT#2,";'
8240 PRINT#2,"PROC PRINT;"
8250 PRINT#2,USING "PROC FACTOR COV NFACTORS # # ROTATE=VARIMAX

8260 PRINT#2,' VAR "

*8270 FOR A=l TO NODE
8280 IF A>9 THEN PRINT#2, USING "N## ";A; ELSE PRINT#2, USING N#

8290 NEXT A
8300 PRINT*2," ;

8310 RETURN
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